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abstract

Since Redington (1952) it has been recognized that classical immunization theory 
fails when shifts in the term structure are not parallel. Using partial durations and 
convexities to specify immunization bounds for non-parallel shifts in yield curves, 
Reitano (1991a,b) extended classical immunization theory to admit non-parallel 
yield curve shifts, demonstrating that these bounds can be effectively manipulated 
by adequate selection of the securities being used to immunize the portfolio. By 
exploiting properties of the multivariate Taylor series expansion of the fund surplus 
value function, this paper extends this analysis to include time values, permitting a 
connection to results on the time value-convexity tradeoff. Measures of partial dur-
ation, partial convexity and time value are used to investigate the generality of the 
duration puzzle identified by Bierwag et al. (1993) and Soto (2001).

Keywords: Yield curve, immunization theory, duration, convexity.

 résumé

Nous savons depuis Redington (1952) que la théorie classique d’immunisation ne 
fonctionne pas lorsque les mouvements dans la structure par termes des taux d’inté-
rêt ne sont pas parallèles. En utilisant des mesures de durée et de convexité partielles 
pour identifier les bornes d’immunisation pour des mouvements non-parallèles, Reitano 
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(1991a, 1991b) a généralisé la théorie classique d’immunisation à des mouvements 
non-parallèles, permettant ainsi de manipuler les bornes d’immunisation en sélection-
nant les titres appropriés dans le portefeuille. Au moyen des propriétés d’expansions 
de Taylor multivariées sur la valeur des fonds, cet article analyse le comportement 
des bornes d’immunisation en prenant en considération la valeur dans le temps de 
l’argent et en liant cette valeur à la convexité de la structure par termes. Des mesures 
de durée et de convexité partielles sont alors utilisées pour étudier la généralisation 
du puzzle de durée tel que présenté par Bierwag et alii (1993) et Soto (2001).

Mots-clés : Structure par terme des taux, théorie d’immunisation, durée, convexité.

 1. INTroduCTIoN

In the seminal work on fixed income portfolio immunization, 
Redington (1952) uses a univariate Taylor series expansion to derive 
two rules for immunizing a life insurance company portfolio against 
a change in the level of interest rates: match the duration of cash 
inflows and outflows; and, set the asset cash flows to have more dis-
persion (convexity) than the liability cash flows around that duration. 
From that beginning, a number of improvements to Redington’s clas-
sical immunization rules have been proposed, aimed at correcting 
limitations in this classical formulation. Particular attention has been 
given to generalizing the classical model to allow for non-parallel 
shifts in the yield curve, e.g., Soto (2004, 2001), Nawalka et al. (2003), 
Navarro and Nave (2001), Crack and Nawalka (2000), Balbas and 
Ibanez (1998) and Bowden (1997). While most studies aim to iden-
tify rules for specifying optimal portfolios that are immunized against 
instantaneous non-parallel shifts, Reitano (1992, 1996) explores the 
properties of the immunization bounds applicable to non-parallel 
shifts. In particular, partial durations and convexities are exploited to 
identify bounds on portfolio gains and losses for an instantaneous 
unit shift in the yield curve. The objective of this paper is to extend 
the partial duration framework by incorporating time value changes 
into the immunization bound approach. This extends the results of 
Christensen and Sorensen (1994), Chance and Jordan (1996), Barber 
and Copper (1997) and Poitras (2005) on the time value-convexity 
tradeoff.

2. BaCkGrouNd LITeraTure

Though Redington (1952) recognized that classical immuniza-
tion theory fails when shifts in the term structure are not parallel, 
Fisher and Weil (1971) were seminal in situating the problem in a 
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term structure framework. The development of techniques to address 
non-parallel yield curve shifts led to the recognition of a connection 
between immunization strategy specification and the type of assumed 
shocks, e.g., Boyle (1978), Fong and Vasicek (1984), Chambers et al. 
(1988). Sophisticated risk measures, such as M 2, were developed to 
select the best duration matching portfolio from the set of potential 
portfolios. Being derived using a specific assumption about the sto-
chastic process generating the term structure, these theoretically 
attractive models encountered difficulties in practice. For example, 
“minimum M 2 portfolios fail to hedge as effectively as portfolios 
including a bond maturing on the horizon date” (Bierwag et al. 1993, 
p. 1165). This line of empirical research led to the recognition of the 
‘duration puzzle’ (Ingersoll 1983; Bierwag et al. 1993; Soto 2001), 
where portfolios containing a maturity-matching bond have smaller 
deviations from the promised target return than duration matched 
portfolios not containing a maturity-matching bond. This result begs 
the question: are these empirical limitations due to failings of the sto-
chastic process assumption underlying the theoretically derived immun-
ization measures or is there some deeper property of the immunization 
process that is not being accurately modelled?

Instead of assuming a specific stochastic process and deriving 
the optimal immunization conditions, it is possible to leave the pro-
cess unspecified and work directly with the properties of an expan-
sion of the spot rate pricing function or some related value function, 
e.g., Shiu (1987,1990). Immunization can then proceed by making 
assumptions based on the empirical behaviour of the yield curve. 
Soto (2001) divides these “empirical multiple factor duration mod-
els” into three categories. Polynomial duration models fit yield curve 
movements using a polynomial function of the terms to maturity, e.g., 
Crack and Nawalka (2000), Soto (2001), or the distance between the 
terms to maturity and the planning horizon, e.g., Nawalka et al. 
(2003). Directional duration models identify general risk factors 
using data reduction techniques such as principal components to cap-
ture the empirical yield curve behaviour, e.g., Elton et al. (2000), Hill 
and Vaysman (1998), Navarro and Nave (2001). Partial duration 
models, including the key rate duration models, decompose the yield 
curve into a number of linear segments based on the selection of key 
rates, e.g., Ho (1992), Dattareya and Fabozzi (1995), Phoa and 
Shearer (1997). Whereas the dimension of polynomial duration mod-
els is restricted by the degree of the polynomial and the directional 
duration models are restricted by the number of empirical compon-
ents or factors that are identified, e.g., Soto (2004), the number of 
key rates used in the partial duration models is exogenously deter-
mined by the desired fit of immunization procedure.
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Reitano (1991a,b) provides a seminal, if not widely recognized, 
analysis of bond portfolio immunization using the partial duration 
approach.1 Though Reitano evaluates a multivariate Taylor series for 
the asset and liability price functions specified using key rates, the 
approach is more general. Multiple factors derived from the spot rate 
curves, bond yield curves, cash flow maturities or key rates can be 
used. In this paper, a refined spot rate model is used where each cash 
flow is associated with a spot rate. Because this approach can be 
cumbersome as the number of future cash flows increases, in prac-
tical applications factor models, key rates and interpolation schemes 
that exogenously determine the dimension of the spot rate space are 
used, as in Ho (1992) and Reitano (1992). The advantage of using a 
spot rate for each cash flow is precision in calculating the individual 
partial duration, convexity and time value measures for the elemen-
tary fixed income portfolios that are being examined. This permits 
exploration of theoretical properties of the immunization problem 
where the spot rate curve can change shape, slope and location. While 
it is possible to reinterpret the refined spot rate curve shift in terms of 
a smaller number of fixed functional factors, this requires some 
method of aggregating the individual cash flows. While such aggre-
gation is essential where the number of the possibly random individual 
cash flows is large, as in practical applications, in this paper ana-
lytical precision is enhanced by having a one-to-one correspondence 
between spot rates and cash flows.

Defining a norm applicable to a unit parallel yield curve shift, 
Reitano exploits Cauchy-Schwarz and quadratic form inequality 
restrictions to identify bounds on the possible deviations from clas-
sical immunization conditions. In other words, even though classical 
immunization rules are violated for non-parallel yield curve shifts, it 
is still possible to put theoretical bounds on the deviations from the 
classical outcome and to identify the specific types of shifts that rep-
resent the greatest loss or gain. This general approach is not unique 
to Reitano. Developing the Gateaux differential approach introduced 
by Bowden (1997), Balbas and Ibanez (1998) rediscover the possi-
bility of defining such bounds, albeit in an alternative mathematical 
framework. Balbas and Ibanez also introduce a linear dispersion 
measure that, when minimized, permits identification of the ‘best’ 
portfolio within the class of immunizing portfolios. More precisely, 
a strategy of matching duration and minimizing the dispersion meas-
ure identifies the portfolio that will minimize immunization risk and, 
as a consequence, provides an optimal upper bound for possible loss 
on the portfolio.

Considering only the implications of instantaneous non-parallel 
yield curve shifts, the partial duration approach to identifying immun-
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ization bounds is not substantively superior to the directional duration 
and polynomial duration models. However, when the analysis is 
extended to include the time-value convexity tradeoff, the partial 
duration approach has the desirable feature of providing a direct 
theoretical relationship between the convexity and time value ele-
ments of the immunization problem. This follows because convexity 
has a time value cost associated with the initial yield curve shape and 
the expected future path of spot rates for reinvestment of coupons 
and rollover of short-dated principal. Despite the essential character 
of the time value decision in overall fixed income portfolio manage-
ment, available results on the time value-convexity tradeoff have 
been developed in the classical Fisher-Weil framework involving 
monotonic term structure shifts and zero surplus funds. The partial 
duration approach permits time value to be directly incorporated into 
the performance measurement of surplus immunized portfolios for 
non-parallel yield curve shifts that are of practical interest.

3. The reITaNo ParTIaL duraTIoN ModeL

The Reitano partial duration model takes the objective function 
to be fund surplus immunization. This is a subtle difference from the 
classical immunization approach used in Redington (1952) where 
the fund surplus is set equal to zero and the solutions to the opti-
mization problem produce duration matching and higher convexity 
of assets conditions for immunization. Following Shiu (1987, 1990), 
Messmore (1990) and Reitano (1991a,b), immunization of a non-
zero surplus involves explicit recognition of the balance sheet rela-
tionship: A = L + S, where A is the assets held by the fund, L is the 
fund liabilities and S is the accumulated surplus. In discrete time, the 
fund surplus value function, S(z), can be specified with spot interest 
rates as:
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where: Ct is the fund net cash flow at time t determined as the differ-
ence between asset (At) and liability (Lt) cash flows at time t; zt is the 
spot interest rate (implied zero coupon interest rate) applicable to 
cash flows at time t; t = (1, 2, ...T ); z = (z1, z2, ...., zT)′ is the Tx1 vec-
tor of spot interest rates; and T is the term to maturity of the fund in 
years. Recognizing that S is a function of the T spot interest rates 
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contained in z, it is possible to apply a multivariate Taylor series 
expansion to this bond price formula, that leads immediately to the 
concepts of partial duration and partial convexity:
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where z0 = (z1,0, z2,0, ...., zT,0)′ is the Tx1 vector of initial spot interest 
rates, Dt is the partial duration of surplus associated with zt, the spot 
interest rate for time t, and CONi,j is the partial convexity of surplus 
associated with the spot interest rates zi and zj for i,j defined over (1, 
2, ...., T).2

Observing that the partial durations at z0 can be identified with 
a Tx1 vector DT = (D1, D2, .... DT)′ and the partial convexities at z0 
with a TxT matrix ΓT with elements CONi,j, the partial duration model 
proceeds by applying results from the theory of normed linear vector 
spaces to identify theoretical bounds on DT and ΓT. In the case of DT, 
the Cauchy-Schwarz inequality is used.3 For ΓT the bounds are based 
on restrictions on the eigenvalues of ΓT derived from the theory of 
quadratic forms. To access these results, the direction vector speci-
fied by Reitano is intuitively appealing. More precisely, taken as a 
group, the (zt – z0,t) changes in the individual spot interest rates rep-
resent shifts in yield curve shape. These individual changes can be 
reexpressed as the product of a direction shift vector N and a magni-
tude ∆i:

(zt – zt,0) = nt ∆i   where  N = (n1, n2, ..., nT)′.

It is now possible to express (1) in vector space form as
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From this, the spot rate curve can be shocked and the immun-
ization bounds derived. The dimension of N provides a connection to 
alternative approaches to the immunization problem that reformulate 
the T dimensional refined spot rate curve in terms of a smaller (< T ) 
number of fixed functional factors. The use of spot rates in the for-
mulation does differ slightly from shocking the yield curve and then 
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deriving the associated change in the spot rate curve. Using the spot 
rate approach, it follows that N0 = (1, 1, ...., 1)′ represents a parallel 
shift in the spot rate curve, with the size of the shift determined by 
∆i.4

To derive the classical immunization conditions, Redington 
(1952) uses a zero surplus fund – S(z0) = 0 – where the present value 
of assets and liabilities are equal at t = 0. In practice, this specifica-
tion is consistent with a life insurance fund where the surplus is being 
considered separately. This classical immunization problem requires 
the maturity composition of an immunized portfolio to be determined 
by equating the duration of assets and liabilities. When the fund sur-
plus function is generalized to allow non-zero values, the immuniza-
tion conditions change to:
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The classical zero surplus immunization result requires setting 
the duration of assets equal to the duration of liabilities. This only 
applies for a zero surplus portfolio. Immunization with a non-zero 
surplus requires the duration of assets to be equal to the duration of 
liabilities, multiplied by the ratio of the market value of assets to the 
market value of liabilities, DA = (L / A) DL, where L and A are the 
market values of assets and liabilities. As indicated, this more gen-
eral condition is derived by differentiating both sides of S = A – L, 
dividing by S and manipulating. A similar comment applies to con-
vexity, i.e., CONA > (L / A) CONL.

Allowing for a non-zero surplus changes the intuition of the 
classical duration matching and convexity conditions. Observing that 
the duration of a portfolio of assets is the value weighted sum of the 
individual asset durations, a positive fund surplus with a zero coupon 
liability allows surplus immunization using a combination of assets 
that have a shorter duration than that of the liability. As such, surplus 
immunization for a fund with a single liability having a duration that 
is longer than the duration of any traded asset can be achieved by 
appropriate adjustment of the size of the surplus. In general, a larger 
positive fund surplus permits a shorter duration of assets to immunize 
a given liability. Because yield curves typically slope upward, this 
result has implications for portfolio returns. In the classical immun-
ization framework, such issues do not arise because the force of 
interest (Kellison 1991) is a constant and, in any event, the force of 
interest for a zero surplus fund is unimportant.6 However, when the 
interest rate risk of the surplus has been immunized, the equity value 
associated with the surplus will earn a return that depends on the 
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force of interest function (see Appendix). This return is measured 
by the “time value” function, e.g., Chance and Jordan (1996). Non-
parallel shifts in the yield curve will alter the time value.

4. CoNVexITY aNd TIMe VaLue

Following Redington (1952), classical immunization requires 
the satisfaction of both duration and convexity conditions: duration 
matching is required to be accompanied with higher portfolio con-
vexity, e.g., Shiu (1990). The convexity requirement ensures that, for 
an instantaneous change in yields, the market price of assets will 
outperform the market price of liabilities. Yet, higher convexity does 
have a cost. In particular, when the yield curve is upward sloping, 
there is a tradeoff between higher convexity and lower time value 
(Christensen and Sorensen, 1994; Poitras, 2005, ch. 5). This connec-
tion highlights a limitation of the Taylor series expansion in (1) and 
(2): the fund surplus value function depends on time as well as the 
vector of spot interest rates, i.e., S = S(z,t). If yields do not change, 
higher convexity will likely result in a lower portfolio return due to 
the impact of time value. Though some progress has been made in 
exploring the relationship between convexity and time value (Chance 
and Jordan, 1996; Barber and Copper, 1997), the precise connection 
to the calculation of the extreme bounds on yield curve shifts is 
unclear. The extreme bounds associated with changes in convexity 
are distinct from those for duration. How shifts in extreme bounds 
for duration and convexity are associated with changes in the port-
folio composition and, in turn, to the time value is, at this point, 
largely unknown.

Assuming for simplicity that cash flows are paid annually, 
evaluating the first order term for the time value in the surplus value 
function, S(z,t), produces:6
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where Θ = (θ1, θ2, ... θT) and θt = (Ct / S) (ln(1 + zt) / (1 + zt)
t). The 

sign on the time value can be ignored by adjusting time to count 
backwards, e.g, changing time from t = 20 to t = 19 produces ∆t = –1. 
Taking the ∆t to be positive permits the negative sign to be ignored. 
Using this convention and rearranging the expansion in (2) to incor-
porate time value gives the surplus change condition:
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In this formulation, the time value component is evaluated using 
(3) with the spot rates observed at the new location. With a non-zero 
surplus, satisfying the surplus immunization condition in (2) means 
that the value of the portfolio surplus will increase by the time value.

One final point arising from the implementation of Reitano’s 
partial duration model concerns the associated convexity calculation. 
Consider the direct calculation of the partial convexity of surplus, 
CONi,j, where i ≠ j:
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where, as previously, Ct is the cash flow at time t for t = (1, 2, ..., T ). 
From (1) and (2), it follows that the quadratic form N ′ ΓT N reduces 
to:
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In terms of the extreme bounds on convexity (see Appendix), 
this is a significant simplification. Because the TxT convexity matrix 
is diagonal, the extreme bounds are now given by the maximum and 
minimum diagonal (CONi,i) elements. If the ith element is a maximal 
element, the associated optimal N vector for the convexity bounds is 
a Tx1 with a one in the ith position and zeroes elsewhere. Similar to 
the duration adjustment, to compare N1′ ΓT N1 with either the clas-
sical convexity or N0′ ΓT N0 requires multiplication by T.

5. keY raTeS, CaSh FLow daTeS aNd  
The NorM

Reitano (1991a, 1992) motivates the analysis of surplus immun-
ization with a stylized example involving a portfolio containing a 5 year 
zero coupon liability (= $63.97) together with a barbell combination 
of two assets, a 12% coupon, ten year bond (= $43.02) and 6 month 
commercial paper (= $25.65; surplus = $9.28). The initial yield curve 
is upward sloping with the vector of yields being y = (.075, .09, .10) 
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for the 0.5, 5 and 10 year maturities. Consistent with the key rate 
approach: “Yields at other maturities are assumed to be interpolated” 
(Reitano 1992, p. 37). Reitano derives the vector of partial durations 
of surplus, DT, for the three relevant maturity ranges as (4.55, –35.43, 
30.88). It follows, for the parallel shift case, N0 = (1, 1, 1)′, that N0′ 
DT = 0 corresponds to the classical surplus immunization condition: 
when the duration of assets equals the appropriately weighted dur-
ation of liabilities, the duration of surplus is zero. As a consequence, 
for a parallel yield curve shift, the change in the portfolio surplus 
equals zero. To derive the bounds for cases involving non-parallel 
shifts, Reitano selects the parallel yield curve shift case as the norm-
ing vector, that involves imposing a standard shift length of:

|| || =N N N n t
t

0 0 0 0
2

1

3

3′ = =
=

∑ , .

From this Reitano is able to identify the extreme bounds on the 
change in the partial duration of surplus as (N*′ DT =) –81.78 ≤ N′ DT 
≤ 81.78, that correspond to an estimate derived from the partial
durations for the max %∆S from the set of all shifts of length 3 . 
The extreme negative yield curve shift is identified as N* = (0.167, 
–1.3, 1.133) and the extreme positive shift as –N*. Similar analysis 
for the convexity of surplus produces extreme positive and negative 
bounds of –434.15 ≤ N ′ ΓT N ≤ 424.04 with associated shifts of 
(0.049, 0.376, 1.69)′ and (–.306, –1.662, 0.379)′.

The specification of the three element norming vector in the key 
rate example of Reitano is motivated by making reference to market 
reality where it is not practical to match the dimension of the yield 
vector with the large number of cash flow dates, e.g., Ho (1992) and 
Phoa and Shearer (1997). Key rates are used to reduce the dimension 
of the optimization problem. Reitano selects an example with 3 rel-
evant key rate maturities, one maturity applicable to a 5 year zero 
coupon liability and two maturities applicable to a 6 month zero cou-
pon asset and a 10 year coupon bond. Even though there are partial 
durations and convexities associated with the regular coupon pay-
ment dates, only three maturity dates are incorporated into the analy-
sis. Because the partial durations, convexities and time values depend 
on the cash flow over a particular payment period, the aggregation of 
cash flows to key rate maturities permits comparable market value to 
be used across yield curve segments. In addition to empirical simpli-
city, another advantage of using key rates in Reitano’s model is that 
the elements of the extreme shift vector, as well as the individual par-
tial durations and convexities, have a more realistic appearance. Where 
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the yield curve or spot rate vectors are specified with the actual number 
of cash flow payments, the optical appearance of the elements of the 
extreme shift vector often has a sawtooth pattern that is unrealistic.7

While the key rate approach may generate shifts that have a 
more realistic appearance, one fundamental limitation of the partial 
duration model, including the key rate variant, is the use of only 
mathematical restrictions on the set of admissible shifts. At least 
since Cox et al. (1979), it has been recognized that stochastic models 
of the term structure that satisfy absence of arbitrage can be used to 
restrict admissible shifts. By employing a norm that is defined math-
ematically relative to a unit element shift vector, the example pro-
vided by Reitano is only able to identify duration bounds associated 
with extreme shifts that may, or may not, admit arbitrage opportun-
ities. From an initial yield curve of y = (.075, .09, .10) for the 0.5, 5 
and 10 year maturities, the extreme negative shift for ∆ i = .01 is to y* 
= (.0767, .077, .1133). In this relatively simple one-shift-only 
example using key rates, the dynamics of the term structure at the 
duration bound are empirically unrealistic. However, this is only a 
disadvantage if it is the (unlikely) extreme bounds that are of inter-
est. If bounds arising from specific shift vectors that are empirically 
determined or ‘most likely’ are of interest, then assigning spot rates 
to cash flow dates along the yield curve is revealing.

The approach in this paper assigns a spot rate to each cash flow 
date, without regard to the size of the payment on that date. While 
this is cumbersome in practical applications where there are a large 
number of cash flow dates, there are distinct theoretical advantages 
for measuring the impact of a particular shift scenario on surplus 
value. In this approach, shift vector scenarios are exogenously speci-
fied, either from empirical or ex ante estimates. Instead of seeking 
the set portfolios that solve the immunization problem, the objective 
is to measure changes in the duration, convexity and time value prop-
erties of specific portfolios for a given shift in the yield curve. 
Economic restrictions imposed by no arbitrage can be assessed prior 
to measuring the impact of a given shift on a specific portfolio. In 
this case, Reitano’s mathematically determined extreme duration 
and convexity bounds areuseful to benchmark changes in surplus 
value. Though other benchmark extreme bounds are possible, such 
as the empirical benchmark examined in Chance and Jordan (1996), 
the approach developed in section VII below has retained the Reitano 
construction.
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6. The duraTIoN BouNdS

Tables 1-3 provide results for the duration component of the 
Taylor series expansion: the individual partial durations; the ele-
ments, nt

*, of the extreme shift vector N*; and the calculated extreme 
duration bounds. Convexity and time value components are not con-
sidered in Tables 1-3. Solving for the partial durations, extreme shift 
vector and duration bounds requires the specification of S, A and L. 
Because there are a theoretically infinite number of potential com-
binations of A and S that can immunize a given L, some form of 
standardization is required to generate plausible and readily analysed 
scenarios. To this end, Tables 1-3 have been standardized to have an 
equal market value for the liability. Similar to Reitano, Tables 1 and 
2 involve a 5 year zero coupon liability while Table 3 uses a 10 year 
annuity with the same market value as the 5 year zero. Table 1 immun-
izes the liability with the two assets from the Reitano example, a six 
month zero and a 10 year, 12% semi-annual coupon bond. To illus-
trate the impact of surplus level on asset portfolio composition, 
results for a high surplus and a low surplus immunizing asset port-
folio are provided. All Tables use the yield curve and spot rates from 
Fabozzi (1993) as the initial baseline.8 This curve is upward sloping 
with a 558 basis point difference between the 6 month (.08) and ten 
year (.1358) spot interest rates.

Table 1 reports the partial durations, the nt
* and extreme duration 

bounds calculated from the Cauchy-Schwarz inequality (see Appendix). 
Comparison of the bounds between the low and high surplus cases 
depends crucially on the observation that the bounds relate to the 
percentage change in the surplus, e.g., an extreme bound of ± 8.86 
means the extreme change in surplus is 8.86%. Due to the smaller 
position in the 6 month asset, the larger bounds for the low surplus 
case also translate to a slightly larger extreme market value change 
when compared to the high surplus case. This result is calculated by 
multiplying the reported bound by the size of the surplus.9 As expected, 
because all cash flow dates are used the extreme shift vector for dur-
ation, N*, exhibits a sawtooth change, with about 80% of the worst 
shift concentrated on a fall in the 5 year yield and 17-20% on an 
increase in the 10 year rate.10 This is an immediate implication of the 
limited exposure to cash flows in other time periods. However, even 
in this relatively simple portfolio management problem, the nt

* pro-
vide useful information about the worst case shift. With the proviso 
that the precise connection to unit shifts is obscured, there is not 
much loss of content to ‘fill in’ the sawtooth pattern as in the key rate 
approach, due to the small partial durations in the intervening periods. 
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TaBLe 1
ParTIaL duraTIoNS, {nt} aNd exTreMe BouNdS 
For The 5 Year Zero CouPoN LIaBILITY IMMu-
NIZed wITh hIGh aNd Low SurPLuS exaMPLeS*

high Surplus Low Surplus

date (Yrs.) Dt nt
* Dt nt

*

  0.5 0.687 0.0775 2.292 0.0236

  1.0 0.075 0.0085 0.870 0.0089

  1.5 0.107 0.0121 1.238 0.0128

  2.0 0.136 0.0153 1.569 0.0162

  2.5 0.161 0.0182 1.863 0.0192

  3.0 0.183 0.0206 2.111 0.0217

  3.5 0.201 0.0226 2.318 0.0239

  4.0 0.214 0.0241 2.472 0.0254

  4.5 0.226 0.0255 2.611 0.0269

  5.0 –7.933– –0.89545– –86.115– –0.88658–

  5.5 0.244 0.0275 2.815 0.0290

  6.0 0.246 0.0277 2.837 0.0292

  6.5 0.247 0.0279 2.854 0.0294

  7.0 0.246 0.0278 2.845 0.0293

  7.5 0.243 0.0275 2.810 0.0289

  8.0 0.242 0.0273 2.792 0.0287

  8.5 0.239 0.0269 2.758 0.0284

  9.0 0.231 0.0260 2.664 0.0274

  9.5 0.221 0.0249 2.551 0.0263

10.0 3.786 0.42733 43.742 0.45033

Cauchy = || D || Cauchy = || D ||

Extreme
Duration
Bounds

± 8.860% ± 97.131%

Surplus 50.75 4.66735

* The market value of the High Surplus Portfolio is composed of ($68.3715) 1/2 year 
zero coupon and ($69.89445) 10 year semi-annual coupon bonds. The market value of 
the Low Surplus Portfolio is composed of ($17.8382) 1/2 year and ($74.343) 10 year 
bonds. The liability for both the High Surplus and Low Surplus Portfolios is a 5 year 
zero coupon bond with $150 par value and market value of $87.51. The extreme 
Cauchy bounds are derived using || N || = 1.
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Consistent with Reitano’s example, the worst type of shift has a size-
able fall in midterm rates combined with smaller, but still significant, 
rise in long term rates.

In using only the 6 month zero and 10 year bond as assets, Table 1 
is constructed to be roughly comparable to the example in Reitano 
(1991a, 1992, 1996). To address the ‘duration puzzle’ in a context 
where portfolios being compared are surplus immunized, the number 
of assets is increased to include a maturity matching bond. This example 
portfolio can then be compared to a portfolio that has a similar sur-
plus but does not contain a maturity matching bond. Table 2 provides 
results for two cases with similar surplus levels but with these differ-
ent asset compositions. One case increases the number of assets by 
including a par bond with a maturity that matches that of the zero 
coupon liability (T = 5). This is referred to as the maturity bond port-
folio. The other case does not include the maturity matching bond 
but, instead, increases the number of assets by including 3 and 7 year 
par bonds. This is referred to as the split maturity portfolio. For both 
portfolios the 1/2 year and 10 year bonds of Table 1 are included, 
with the position in the 10 year bond being the same in both of the 
Table 2 asset portfolios. In order to achieve surplus immunization, 
the 1/2 year bond position is permitted to vary, with the maturity 
matching portfolio holding a slightly higher market value of the 1/2 
year asset. A priori, the split maturity portfolio would seem to have 
an advantage as four assets are being used to immunize instead of the 
three bonds in the maturity matching portfolio.

Given this, the results in Table 2 reveal that the portfolio with 
the maturity matching bond has a smaller surplus and much smaller 
extreme bounds even though more bonds are being selected in the 
split maturity portfolio and, from Table 1, it is expected that a smaller 
surplus will have wider extreme bounds. The partial durations reveal 
that, as expected, the presence of a maturity matching bond reduces 
the partial duration at T = 5 compared to the split maturity case. The 
partial durations at T = 3 and T = 7 are proportionately higher in the 
split maturity case to account for the difference at T = 5. The small 
difference in the partial duration at T = 10 is due solely to the small 
difference in the size of the surplus. Examining the nt

* reveals that 
there is not a substantial difference in the sensitivity to changes in 
five year rates, as might be expected. Rather, the split maturity port-
folio redistributes the interest rate sensitivity along the yield curve. 
In contrast, the maturity bond portfolio is relatively more exposed to 
changes in 10 year rates even though the market value of the 10 year 
bond is the same in both asset portfolios. This greater exposure along 
the yield curve by the split maturity portfolio results in wider extreme 
duration bounds because the norming restriction dampens the allow-
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TaBLe 2
ParTIaL duraTIoNS, {nt} aNd exTreMe BouNdS 
For The 5 Year Zero CouPoN LIaBILITY IMMu-
NIZed wITh The MaTurITY BoNd aNd SPLIT 
MaTurITY exaMPLeS*

Maturity Bond Split Maturity

date (Yrs.) Dt nt
* Dt nt

*

  0.5 0.476 0.0183 0.251 0.0063

  1.0 0.454 0.0174 0.446 0.0112

  1.5 0.646 0.0248 0.635 0.0159

  2.0 0.818 0.0314 0.804 0.0201

  2.5 0.971 0.0373 0.955 0.0239

  3.0 1.101 0.0422 7.737 0.1939

  3.5 1.208 0.0464 0.834 0.0209

  4.0 1.288 0.0494 0.889 0.0223

  4.5 1.361 0.0522 0.939 0.0235

  5.0 –23.866– –0.91558– –36.998– –0.92716–

  5.5 0.636 0.0244 1.012 0.0254

  6.0 0.641 0.0246 1.020 0.0256

  6.5 0.645 0.0247 1.026 0.0257

  7.0 0.643 0.0247 8.177 0.2049

  7.5 0.635 0.0244 0.601 0.0151

  8.0 0.631 0.0242 0.597 0.0150

  8.5 0.623 0.0239 0.590 0.0148

  9.0 0.602 0.0231 0.569 0.0143

  9.5 0.577 0.0221 0.545 0.0137

10.0 9.884 0.37921 9.350 0.23430

Cauchy = || D || Cauchy = || D ||

Extreme
Duration
Bounds

± 26.07% ± 39.905%

Surplus 10.32685 10.91804

* The market value of the Maturity Bond Portfolio is composed of ($5.13) 1/2 year, 
($55.54) 5 year and ($37.172) 10 year bonds. The market value of the Split Maturity 
Portfolio is composed of ($0.4105) 1/2 year, ($33.8435) 3 year, (27.0) 7 year and 
($37.172) 10 year bonds. The liability is a 5 year zero coupon bond with $150 par value 
and market value of $87.51. The extreme Cauchy bounds are derived using || N || = 1.
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able movement in any individual interest rate. In other words, spread-
ing interest rate exposure along the yield curve by picking assets 
across a greater number of maturities acts to increase the exposure to 
spot rate curve shifts of unit length.

Table 3 considers the implications of immunizing a liability 
with a decidedly different cash flow pattern. In particular, the liabil-
ity being immunized is an annuity over T = 10 with the same market 
value as the zero coupon liability in Tables 1-2. The immunizing 
asset portfolios are a ‘maturity matching’ portfolio similar to that in 
Table 2 combining the 6 month zero coupon with 5 year and 10 year 
bonds. The market value of the 10 year bond is the same as in the 
Table 2 asset portfolios. The other case considered is a ‘low surplus’ 
portfolio, similar to that of Table 1, containing the 6 month zero and 
10 year bond as assets. Table 3 reveals a significant relative differ-
ence between the extreme bounds for the two portfolios compared 
with the similar portfolios in Tables 1 and 2. The extreme bound for 
the low surplus portfolio has been reduced to about one third the 
value of the bound in Table 1 with the N* vector being dominated by 
the nt

* value for T = 10. The extreme bound for the maturity bond 
portfolio has been reduced by just over one half compared to the 
optimal bound for the Table 2 portfolio with the N* vector being 
dominated by the nt

* values at T = 5 and T = 10. When the extreme 
bounds for the two portfolios in Table 2 are multiplied by the size of 
the surplus, there is not much difference in the potential extreme 
change in the value of the surpluses between the two portfolios in 
Table 3. This happens because, unlike the zero coupon 5 year liabil-
ity of Table 2, the liability cash flow of the annuity is spread across 
the term structure and the addition of the five year asset provides 
greater coverage of the cash flow pattern. In the annuity liability 
case, the dramatic exposure to the T = 10 rate indicated by the nt

* of 
the low surplus portfolio is a disadvantage compared to the maturity 
bond portfolio which distributes the rate exposure between the T = 5 
and T = 10 year maturities.

7. CoNVexITY BouNdS aNd TIMe VaLue

Table 4 provides incrementally more information on the port-
folios examined in Tables 1-3. Certain pieces of relevant information 
are repeated from Tables 1-3: the surplus and the extreme bounds for 
duration. In addition, Table 4 provides the time value, the sum of the 
partial convexities (N0′ ΓT N0), the maximum and minimum partial 
convexities and the quadratic form defined by the duration-optimal-
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TaBLe 3
ParTIaL duraTIoNS, {nt} aNd exTreMe BouNdS 
For The 10 Year aNNuITY LIaBILITY IMMuNIZed 
wITh The MaTurITY BoNd aNd Low SurPLuS 
exaMPLeS*

Maturity Bond Low Surplus

date (Yrs.) Dt nt
* Dt nt

*

  0.5 –1.034 –0.0841 –2.856 –0.0869

  1.0 –0.275 –0.0224 –0.705 –0.0214

  1.5 –0.392 –0.0319 –1.003 –0.0305

  2.0 –0.497 –0.0404 –1.271 –0.0387

  2.5 –0.590 –0.0480 –1.509 –0.0459

  3.0 –0.668 –0.0543 –1.710 –0.0520

  3.5 –0.734 –0.0597 –1.877 –0.0571

  4.0 –0.782 –0.0636 –2.001 –0.0609

  4.5 –0.826 –0.0672 –2.115 –0.0643

  5.0 –8.257 0.67159 –2.201 –0.0670

  5.5 –1.401 –0.1139 –2.280 –0.0694

  6.0 –1.412 –0.1148 –2.298 –0.0699

  6.5 –1.420 –0.1155 –2.311 –0.0703

  7.0 –1.415 –0.1151 –2.304 –0.0701

  7.5 –1.398 –0.1137 –2.276 –0.0693

  8.0 –1.389 –0.1130 –2.262 –0.0688

  8.5 –1.372 –0.1116 –2.234 –0.0680

  9.0 –1.325 –0.1078 –2.157 –0.0656

  9.5 –1.269 –0.1032 –2.066 –0.0629

10.0 7.855 0.63888 31.647 0.9629

Cauchy = || D || Cauchy = || D ||

Extreme
Duration
Bounds:

± 12.29% ± 32.87%

Surplus: 10.5979 4.68

* The market value of the Maturity Bond Portfolio is composed of ($25.97) 1/2 year, 
($34.956) 5 year and ($37.172) 10 year bonds. The market value of the Low Surplus 
Portfolio is composed of ($31.388) 1/2 year and ($60.791) 10 year bonds. The liability 
has market value of $87.51 with annual coupon, paid semi-annually, of $14.96. The 
extreme bounds are derived using || N || = 1.
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shift convexities, N*′ ΓT N*, where N* = (n1
*, ...., nT

*) is the vector 
containing the optimal n*′s from Tables 1-3 and ΓT is a diagonal mat-
rix with the CONt,t elements along the diagonal.11 The quadratic form 
calculated using the N* for the duration bound is of interest because 
it provides information about whether the convexity impact will be 
improving or deteriorating the change in surplus when the extreme 
duration shift occurs. Using these measures, Table 4 illustrates the 
importance of examining the convexity and time value information, 
in conjunction with the duration results. Of particular interest is the 
comparison between the maturity matching and the split maturity 
portfolios of Table 2.

 The primary result in Table 2 was that the split maturity port-
folio had greater potential exposure to spot rate (yield) curve shifts, 
as reflected in the wider extreme bounds associated with a spot rate 
curve shift of length one. Whether this was a positive or negative 
situation was unclear, as the extreme bounds permitted both larger 
potential gains, as well larger potential losses, for the split maturity 
portfolio. Yet, by identifying lower potential variability of the sur-
plus of the maturity bond portfolio, this provides some insight into 
the duration puzzle. In this vein, Table 4 also reveals that, despite 
having a smaller surplus, the maturity bond portfolio has a margin-
ally higher time value. This happens because, despite having a higher 
surplus and a smaller holding of the 1/2 year bond, the split maturity 
portfolio has to hold a disproportionately larger amount of the three 
year bond relative to the higher yielding seven year bond. With an 
upward sloping yield curve, this lower time value is combined with 
a higher convexity, as measured by N0′ ΓT N0. This is consistent with 
the results in Christensen and Sorensen (1994) where a tradeoff 
between convexity and time value is proposed, albeit for a classical 
one factor model using a single interest rate process to capture the 
evolution of the yield curve.12 As such, there is a connection in the 
maturity bond portfolio between higher time value, lower convexity 
and smaller extreme bounds that is directly relevant to resolving the 
‘duration puzzle’.

Table 4 also provides a number of other useful results. For example, 
comparison of the high and low surplus portfolios from Table 1 adds 
to the conclusions derived from that Table. It is apparent that, all 
other things equal, the time value will depend on the size of the sur-
plus. However, as illustrated in Table 4, the relationship is far from 
linear: the surpluses of the two portfolios from Table 1 differ by a 
factor of 10.9 and the time values differ by a factor of 2.5. High sur-
plus portfolios permit a proportionately smaller amount of the longer 
term security to be held with corresponding impact on all the various 
measures for duration, convexity and time value. In addition, unlike 
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TaBLe 4
TIMe VaLueS, CoNVexITY aNd oTher MeaSureS 
For The IMMuNIZING PorTFoLIoS*

TaBLe 1
(5 Year Zero Liability)

high Surplus Low Surplus

Surplus 50.75 4.667

Time Value = 2 N0′ Θ 0.07118 0.0278

N0′ ΓT N0 17.18 221.94

N*′ ΓT N
* –25.34 –259.59

Max CONt 37.23 430.09

Min CONt –41.34 –448.79

Cauchy Duration Bound ± 8.86% ± 97.13%

N0′ DT –0.000 –0.102

TaBLe 2
(5 Year Zero Liability)

Maturity Bond Split Maturity

Surplus 10.327 10.918

Time Value = 2 N0′ Θ 0.0664 0.0648

N0′ ΓT N0 42.37 44.21

N*′ ΓT N
* –85.39 –142.06

Max CONt 97.19 91.93

Min CONt –124.38 –192.81

Cauchy Duration Bound ± 26.07% ± 39.90%

N0′ DT –0.025 –0.022

TaBLe 3
(10 Year Annuity Liability)

Maturity Bond Low Surplus

Surplus 10.598 4.68

Time Value = 2 N0′ Θ 0.0724 0.0510

N0′ ΓT N0 11.96 109.34

N*′ ΓT N
* 21.61 287.65

Max CONt 77.23 311.17

Min CONt –11.89 –19.36

Cauchy Duration Bound ± 12.29% ± 32.86%

N0′ DT –0.019 –0.077

* See Notes to Tables 1-3. Multiplying by 2 to make appropriate adjustment to convert 
semiannual to annual rates, the time value N0′ 1 is defined in (3). The sum of the partial 
convexities is N0′ ΘT N0 The quadratic form, N*′ ΓT N

*, is the sum of squares for the 
relevant N* from Tables 1-3 multiplied term-by-term with the appropriate partial  
convexities. Max CON and Min CON are the maximum and minimum individual partial 
convexities.
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the classical interpretation of convexity which is often associated with 
the single bond case where all cash flows are positive, convexity of 
the surplus can, in general, take negative values and, in the extreme 
cases, these negative values can be larger than the extreme positive 
values. However, this is not always the case, as evidenced in the 
Table 3 portfolios where the liability is an annuity. The absence of a 
future liability cash flow concentrated in a particular period produces 
a decided asymmetry in the Max CON and Min CON measures for 
individual Ct,t convexities, with the Max values being much larger 
than the absolute value of the Min values. This is a consequence of 
the large market value of the 10 year bond relative to the individual 
annuity payments for the liability.

8. IMMuNIZING aGaINST SPeCIFIC SCeNarIo 
ShIFTS

The appropriate procedure for immunizing a portfolio against 
arbitrary yield curve shifts is difficult to identify, e.g., Reitano (1996). 
Some previous efforts that have approached this problem, e.g,, Fong 
and Vasicek (1984), have developed duration measures with weights 
on future cash flows depending on a specific stochastic process assumed 
to drive term structure movements. This introduces ‘stochastic pro-
cess risk’ into the immunization problem. If the assumed stochastic 
process is incorrect the immunization strategy may not perform as 
anticipated and can even underperform portfolios constructed using 
classical immunization conditions. In general, short of cash flow 
matching, it may not be possible to theoretically solve the problem of 
designing a practical immunization strategy that can provide “opti-
mal” protection against arbitrary yield curve shifts. In the spirit of 
Hill and Vaysman (1998), a less ambitious approach is to evaluate 
a specific portfolio’s sensitivity to predetermined yield curve shift 
scenarios. In practical applications, this will be sufficient for many 
purposes. For example, faced with a steep yield curve, a portfolio 
manager is likely to be more concerned about the impact of the yield 
curve flattening than with a further steepening. If there is some prior 
information about the expected change in location and shape of the 
yield curve, it is possible to explore the properties of portfolios that 
satisfy a surplus immunizing condition at the initial yield curve loca-
tion.

The basic procedure for evaluating the impact of specific yield 
curve shifts requires a spot rate shift vector (∆i) Ni = {(z1,1 – z1,0),  
(z2,1 – z2,0), .... (zT,1 – zT,0)} to be specified that reflects the anticipated 
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shift from the initial location at z0 = (z1,0, z2,0, ..., zT,0) to the target 
location z1 = (z1,1, z2,1, ..., zT,1). This step begs an obvious question: 
what is the correct method for adequately specifying Ni? It is well 
known that, in order to avoid arbitrage opportunities, shifts in the 
term structure cannot be set arbitrarily, e.g., Boyle (1978). If a stochas-
tic model is used to generate shifts, it is required that Ni be consistent 
with absence of arbitrage restrictions on the assumed stochastic 
model. These restrictions, which apply to the set of all possible paths 
generated from the stochastic model, are not required when the set of 
assumed future yield curve shift scenarios is restricted to specific 
shift scenarios based on historical experience or ex ante expectations 
exogenously checked for consistency with absence of arbitrage. Where 
such shift scenarios are notional, relevant restrictions for maintain-
ing consistency between individual spot rates are required. In terms 
of implied forward rates in one factor term structure models, neces-
sary restrictions for absence of arbitrage take the form:13

(1 + zj)
j =  (1 + zi)

i (1 + fi,j)
j-i = (1 + z1) (1 + f1,2) (1 + f2,3), ...,  

(1 + fj-1, j)

where the implied forward rates are defined as (1 + f1,2) = (1 + z2)
2 / 

(1 + z1) and f j-1, j = (1 + zj)
j / (1 + z j-1)

j-1 with other forward rates 
defined appropriately. This imposes a smoothness requirement on 
spot rates restricting the admissible deviation of adjacent spot rates.

In addition to smoothness restrictions on adjacent spot rates, the 
use of the partial duration approach requires that admissible Ni shifts 
satisfy the norming condition || N || = 1. In the associated set of unit 
length spot rate curve shifts, there are numerous shifts which do not 
satisfy the spot rate smoothness requirement. Because smoothing 
will allocate a substantial portion of the unit shift to spot rates that 
have small partial durations, restricting the possible shifts by using 
smoothness restrictions tightens the convexity and duration bounds 
compared to the extreme bounds reported in Tables 1-4. To investi-
gate this issue, three scenarios for shifting the initial yield curve are 
considered: flattening with an upward move in level, holding the T = 10 
spot rate constant (YC1); flattening with a downward move in level, 
holding the T = 6 month rate constant (YC2); and, flattening with a 
pivoting around the T = 5 rate, where the T > 5 year rates fall and the 
T < 5 year rates rise (YC3). In empirical terms, these three scenarios 
represent plausible yield curve slope shifts that have the largest pos-
sible move in the short rate (YC1) and the long rate (YC2), and no 
change in the rate on the liability (YC3). While other empirically 
plausible scenarios are possible, such as a shift in yield curve shape 
moving the rate on the liability down, the long rate up and holding 
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the short rate constant as in the extreme negative shifts in Tables 1-2, 
such cases are not examined due to the necessity of keeping the num-
ber of scenarios to a manageable level.

Given the three shift scenarios being considered, what remains 
is to specify the elements of Ni for shifts of unit length. The smooth-
ness restrictions require that changes in yield curve shape will distrib-
ute the shift proportionately along the yield curve. For example, 
when flattening with an upward move in level, the change in the T = 6 
month rate would be largest, with the size of the shift getting propor-
tionately smaller as T increases, reaching zero at T = 10. Solving for 
a factor of proportionality in the geometric progression, subject to 
satisfaction of the norming condition, produces a number of possible 
solutions, depending on the size of the spot rate increase at the first 
step. The following three unit length Ni shift vectors were identified.

Time
(Yrs.)

Flatten up
(YC1)

Flatten down
(YC2)

Pivot
(YC3)

.5 0.400 -0.000 -0.371

1 0.368 -0.090 -0.180

1.5 0.339 -0.097 -0.164

2 0.312 -0.106 -0.146

2.5 0.287 -0.115 -0.126

3 0.264 -0.125 -0.105

3.5 0.243 -0.136 -0.082

4 0.224 -0.147 -0.057

4.5 0.206 -0.160 -0.030

5 0.189 -0.174 -0.000

5.5 0.174 -0.189 -0.032

6 0.160 -0.206 -0.067

6.5 0.147 -0.224 -0.105

7 0.136 -0.243 -0.146

7.5 0.125 -0.264 -0.191

8 0.115 -0.287 -0.240

8.5 0.106 -0.312 -0.293

9 0.097 -0.339 -0.351

9.5 0.090 -0.368 -0.413

10 0.000 -0.400 -0.481

As in (1) and (2), the actual change in a specific spot rate requires 
the magnitude of the shift to be given. Observing that each of these 
three scenario Ni vectors is constructed to satisfy the norming condition 
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|| N || = 1, the empirical implications of this restriction are apparent. 
More precisely, unit length shifts do not make distinction between 
the considerably higher volatility for changes in short term rates 
compared to long term rates. Imposing both unit length shift and 
smoothness restrictions on spot rates is not enough to restrict the set 
of theoretically admissible shifts to capture all aspects of empirical 
consistency. While it is possible impose further empirically-based 
restrictions on the set of admissible shifts, for present purposes it is 
sufficient to work with these three empirically plausible spot rate 
curve shift scenarios.

Given these three unit length spot rate curve shifts, Table 5 pro-
vides the calculated values associated with (2) and (3) for the six 
portfolios of Tables 1-3. Because the initial duration of surplus is 
approximately zero and the portfolio convexity (N0′ ΓT N0) is positive 
in all cases, classical immunization theory predicts that the portfolio 
surplus will not be reduced by interest rate changes.14 The information 
in Table 5 illustrates how the partial duration approach generalizes 
this classical immunization result to assumed non-parallel spot rate 
curve shifts. Comparison of the size of Ni′DT with the Cauchy bound 
reveals the dramatic reduction that smoothness imposes on the poten-
tial change in surplus value. In particular, from (2) it follows that a 
negative value for the partial duration measure Ni′DT is associated 
with an increase in the value of the fund surplus projected by the 
duration component. All such values in Table 5 are negative, consist-
ent with Ni′DT indicating all three curve shifts produce an increase in 
the value of surplus. As in Tables 1-3, the change in the surplus from 
the duration component can be calculated by multiplying the surplus 
by the Ni′DT value and the assumed shift magnitude ∆i. For every 
portfolio, the YC3 shift produced a larger surplus increase from the 
duration component than YC1 and YC2. Given that the YC3 shift 
decreases the interest rate for the high duration 10 year asset and 
increases the interest rate for the low duration 6 month asset without 
an offsetting change in the liability value, this result is not surprising. 
In contrast, while the YC2 shift increased surplus more than YC1 in 
most cases, the reverse result for the maturity bond portfolio with the 
annuity liability indicates that portfolio composition can matter when 
the spot rate curve shift is non-parallel.

Following Chance and Jordan (1996) and Poitras (2005, p.275), 
interpreting the contribution from convexity depends on the assumed 
shift magnitude ∆i 2. A positive value for the convexity component 
(Ni′ ΓT Ni) indicates an improvement in the surplus change in addi-
tion to the increase from Ni′DT. For all portfolios, there was small 
negative contribution from convexity for the spot rate curve flattening 
up (YC1). When multiplied by empirically plausible values for ∆i2 
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TaBLe 5
ParTIaL duraTIoNS aNd CoNVexITIeS For The 
IMMuNIZING PorTFoLIoS uNder dIFFereNT  
YIeLd CurVe ShIFT aSSuMPTIoNS*

TaBLe 1
(5 Year Zero Liability)

high Surplus Low Surplus

Surplus 50.75 4.667
YC1 YC2 YC3 YC1 YC2 YC3

Ni′ DT –0.606 –.879 –1.875 –8.205 –11.127 –23.75
Ni′ ΓT Ni –0.828 6.082 9.778 –9.398 71.151 112.23
2 N0′ 1i .09144 .0878 .08922 .0436 .0408 .0554

Cauchy Bound (||DT
||) ± 8.86% ± 97.13%

N*′ ΓT N
* –25.34 –259.59

N0′ ΓT N0 17.18 221.94
Time Value = 2 N0′ Θ .07118 .0274

TaBLe 2
(5 Year Zero Liability)

Maturity Bond Split Maturity

Surplus 10.327 10.918
YC1 YC2 YC3 YC1 YC2 YC3

Ni′ DT –1.532 –2.328 –4.955 –1.451 –2.478 –5.289
Ni′ ΓT Ni –1.976 15.667 25.489 –2.039 16.281 25.51
2 N0′ 1i .07274 .06864 .07398 .07108 .06674. 07182

Cauchy Bound (||DT
||) ± 26.06% ± 39.90%

N*′ ΓT N
* –85.39 –142.06

N0′ ΓT N0 42.37 44.21
Time Value = 2 N0′ Θ .0664 .0648

TaBLe 3 (10 Year 
Annuity Liability)

Maturity Bond Low Surplus

Surplus 10.598 4.68
YC1 YC2 YC3 YC1 YC2 YC3

Ni′ DT –0.874 –0.638 –1.360 –5.086 –5.287 –11.30
Ni′ ΓT Ni –0.847 5.902 12.01 –5.039 36.520 62.55
2 N0′ 1i .07736 .07408 .07592 .0616 .0600 .07156

Cauchy Bound (||DT
||) ± 12.29% ± 32.86%

N*′ ΓT N
* 21.61 267.49

N0′ ΓT N0 11.96 109.34
Time Value = 2 N0′ Θ .0724 .0510

* See Notes to Tables 1-3. YC1 has the spot rate curve flattening up, with the T = 10 
rate constant; YC2 has the spot rate curve flattening down with the T = .5 (6 month) 
rate constant; and, YC3 has a flattening pivot with the T = 5 year rate constant. 2 N0′ 1i 
annualizes (3) evaluated using the Ni shifted spot rates.
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the negative values are small relative to Ni′DT, indicating that the 
additional contribution from convexity does not have much relative 
impact. Results for the spot rate curve flattening down (YC2) and the 
pivot (YC3) produced positive convexity values for all portfolios. 
While for empirically plausible shift magnitudes the convexity val-
ues for the YC2 shift were also not large enough to have a substantial 
impact on the calculated change in surplus, the YC3 values could 
have a marginal impact if the shift magnitudes were large enough. 
For example, assuming ∆i = .01, the 23.7% surplus increase pre-
dicted by Ni′DT in the low surplus portfolio in Table 1 is increased by 
1.12% from the convexity contribution. Also of interest is the mag-
nitude of Ni′ ΓT Ni relative to N0′ ΓT N0. While the calculated Ni′DT 
term is small in comparison to the Cauchy bound even for YC3, the 
calculated Ni′ ΓT Ni is over half as large as N0′ ΓT N0 for YC3 and 
more than one third the value for YC2.

Results for partial duration and partial convexities are relevant 
to the determination of the change in surplus associated with various 
non-parallel yield curve shifts. Table 5 also reports results for the 
change in time value for the six portfolios and three spot rate curve 
shift scenarios. From (3) and (4), time value measures the rate of 
change in the surplus if the yield curve remains unchanged over a 
time interval. For portfolios with equal duration and different con-
vexities, such as those in Table 2, differences in time value reflect the 
cost of convexity. For a steep yield curve, the cost of convexity is 
high and for a flat yield curve the cost of convexity is approximately 
zero. From (3), it is apparent that yield curve slope shifts will also 
impact the time value. While YC1-YC3 all reflect a flattening of the 
spot rate curve, the level of the curve after the shift is different. In 
addition, because the calculation of time value involves discounting 
of future cash flows, it is not certain that an upward flattening in the 
level of the spot rate curve (YC1) will necessarily produce a superior 
increase in time value compared to a flattening pivot of the curve (YC3).

Significantly, the YC3 shift produced the largest increases in 
surplus for all portfolios except the high surplus portfolio of Table 1 
where the YC1 shift produced the largest increase in time value. In 
all cases, the YC2 shift produced the smallest increase in time value. 
These results are not apparent from a visual inspection of the differ-
ent shifts, which appear to favour YC1 where spot rates increase the 
most at all maturity dates. To see how this occurs, consider the partial 
time values from the low surplus portfolio in Table 1. For the initial 
yield curve, θt associated with the largest cash flows are θ1/2 = .18698, 
θ5 = –.97942 and θ10 = .30677. For YC3, these values become θ1/2  
= .19513, θ5 = –.97942 and θ10 = .30990 while for YC1 the values are 
θ1/2 = .19576, θ5 = –.98683 and θ10 = .30677. While the pivot leaves 



Assurances et gestion des risques, vol. 75(3), octobre 2007348

the time value of the liability unchanged and increases the time value 
of the principal associated with the10 year bond, the overall upward 
shift in rates associated with YC1 is insufficient to compensate for 
the negative impact of the rate increase for the liability. Comparing 
this to the high surplus case where YC1 had a superior increase in 
time value compared to YC3, the initial yield curve values for the 
high cash flow points are θ1/2 = .056045, θ5 = –.090227 and θ10 = .026552 
which change to θ1/2 = .058678, θ5 = –.09091 and θ10 = .034144 for 
YC1 and θ1/2 = .058489, θ5 = –.090227 and θ10 = .034493. Because 
the higher surplus portfolio has more relative asset value, the higher 
overall level of rates associated with YC1 can be reflected in the time 
value change.

9. TaCkLING The duraTIoN PuZZLe

The duration puzzle is an empirical result where portfolios con-
taining a maturity matching bond have smaller observed deviations 
from the target return than immunized portfolios designed to be 
theoretically optimal, such as minimum M 2 portfolios. In this paper, 
the duration puzzle is addressed by comparing maturity bond and 
split maturity portfolios. Because the precise connection between the 
split maturity portfolio and a theoretically optimal portfolio is 
undeveloped, the results are aimed at using properties of the maturity 
bond portfolio to explain the duration puzzle. In particular, results in 
Table 2 reveal that the portfolio with the maturity matching bond has 
a smaller surplus and much smaller extreme bounds even though more 
bonds are being selected in the split maturity portfolio. Examining 
the nt

* reveals that the split maturity portfolio redistributes the inter-
est rate sensitivity along the yield curve. In contrast, the maturity 
bond portfolio is relatively more exposed to changes in 10 year rates 
even though the market value of the 10 year bond is the same in both 
asset portfolios. This greater exposure along the yield curve by the 
split maturity portfolio results in wider extreme duration bounds 
because the norming restriction dampens the allowable movement in 
any individual interest rate.

Performance of an immunized portfolio can be measured in a 
number of ways. For example, the empirical variation of the immun-
ized portfolio return from the promised target could be used. Another 
potential performance measure could combine variation from the tar-
get return with the increase in portfolio value or, alternatively, only 
use the average increase in portfolio value to measure performance. 
In this vein, Table 4 reveals that, despite having a smaller surplus, the 
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maturity bond portfolio has a marginally higher time value than the 
split maturity portfolio. This happens because, despite having a 
higher surplus and a smaller holding of the 1/2 year bond, the split 
maturity portfolio has to hold a disproportionately larger amount of 
the three year bond relative to the higher yielding seven year bond. 
With an upward sloping yield curve, this lower time value is com-
bined with a higher convexity, as measured by N0′ ΓT N0. This is 
consistent with the results in Christensen and Sorensen (1994) where 
a tradeoff between convexity and time value is proposed, albeit for a 
classical one factor model using a single interest rate process to cap-
ture the evolution of the yield curve. Empirically, this result depends 
on an upward sloping yield curve. In situations where, say, the yield 
curve shifts from flat to inverted, a different result would be obtained. 
Hence, the duration puzzle can be attributed to the empirical preva-
lence of certain types of yield curve shifts compared to other types.

Finally, Table 5 provides further evidence on the duration puz-
zle. Based on the results in Table 4, comparison of the maturity 
matching portfolio with the split maturity portfolio reveals the time 
value-convexity tradeoff identified by Christensen and Sorensen 
(1994). The higher reported time value measure for the maturity 
bond portfolio was offset by the higher convexity values for the split 
maturity portfolio. Under classical conditions, this implies a superior 
value change for the split maturity portfolio if interest rates change 
sufficiently. Yet, in Table 5 the maturity matching portfolio has a 
larger change in surplus than the split maturity portfolio for the flat-
tening up shift (YC1) while retaining the time value advantage across 
all three scenarios. However, for both the flattening down and the 
pivot shifts, the surplus increase for the split maturity portfolio does 
outperform the maturity matching portfolio as expected. This is 
another variant of the duration puzzle. Because the result does not 
apply to all three scenarios, this implies that the duration puzzle is 
not a general result but, rather, is associated with specific types of 
yield curve shifts. If this result extends to real time data, the presence 
of the duration puzzle can be attributed to the prevalence of certain 
types of yield curve shifts compared to other types. The appearance 
of the duration puzzle in the selected scenarios is due to a compli-
cated interaction between the partial durations, partial convexities 
and time values. As such, the partial duration approach is well suited 
to further investigation of this puzzle.

10. CoNCLuSIoN

This paper extends the partial duration, surplus immunization 
model of Reitano (1992, 1996) to include a measure of the time value. 
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This measure captures the impact of the force of interest function on 
the change in fund surplus. The extreme duration and convexity 
bounds for assessing the impact of non-parallel yield curve shifts on 
fund surplus provided in the Reitano model are examined and it is 
demonstrated that these bounds are considerably wider than actual 
surplus changes for shifts that are likely to occur. Recognizing that 
classical immunization is an idealized objective, the paper provides 
a range of measures – based on the partial durations, convexities and 
time values – that can be used to measure different aspects of port-
folio immunization and return performance. These measures are used 
to examine a variant of the ‘duration puzzle’ where the performance 
of an immunizing portfolio with a maturity matching bond is com-
pared with that of an immunizing portfolio without an asset that 
matches the maturity of the zero coupon liability. It is demonstrated 
that the empirically superior performance of the maturity matching 
bond, reported by Bierwag et al. (1993), Soto (2001) and others, 
depends on the type of assumed shift and is not a general result. In 
addition, the partial duration, convexity and time value measures 
were used to provide more detailed evidence on the tradeoff between 
convexity and time value identified by Chance and Jordan (1996), 
Barber and Copper (1997) and others.

In the spirit of Redington (1952), there is a considerable dis-
tance to travel from the simple portfolio illustrations of immuniza-
tion theory presented in this paper to the complex risk management 
problems arising in financial institutions such as pension funds, life 
insurance companies, securities firms and depository institutions (e.g., 
Poitras 2006). In particular, cash flow patterns in financial institu-
tions are decidedly more complicated. Not only are the cash flows 
more numerous, there is also an element of randomness that is not 
easy to model. This paper develops a theoretical method for captur-
ing the impact that non-parallel yield curve shifts and time values 
have on fixed income portfolio returns. This is done by increasing the 
amount of data that is needed to implement the risk management 
strategy. Whereas classical duration can make use of the simplifica-
tion that the portfolio duration is the value weighted sum of the dur-
ations of the individual assets and liabilities, the approach used here 
requires the net cash flows at each payment date to be determined. In 
simple portfolio illustrations this requirement is not too demanding. 
However, this requirement could present problems to a financial 
institution faced with large numbers of cash flows, a significant frac-
tion of which may be relatively uncertain. Extending the partial dur-
ation approach to incorporate randomness in cash flows would provide 
further insight into practical immunization problems.
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aPPeNdIx
aLTerNaTIVe derIVaTIoN oF The TIMe VaLue  
IN CoNTINuouS TIMe

Let Ct = At – Lt. Following Shiu (1990), the surplus value function can be 
defined:
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where δ(s) is the force of interest, also referred to as the instantaneous 
forward rate function. Observing that Ct is fixed by the specification of the 
portfolio components, taking the time derivative involves terms such as:
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With this result, evaluating the derivative gives the desired result:
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Upon dividing by S, the result given in the paper is the discrete time version 
of this solution. To show that the time value is equal to the force of interest 
in Redington’s model observe that when there is only one yield the surplus 
function has the form:
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Solution for the optimal duration weights n1, n2, .... , nT:

The optimization problem is to set the N weighted sum of the partial dur-
ations of surplus equal to zero, subject to the constraint that the N′N equals 
the norming value. Without loss of generality, assume that the norming value 
is one, which leads to:
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aPPeNdIx

This optimization leads to k + 1 first order conditions in the k ni and λ. 
Observing that the first order condition for the ni can be set equal to λ / 2, 
appropriate substitutions can be made into the first order condition for λ 
that provides the solution for the individual weights.

Solution for the optimal Convexity weights n1, n2, .... , nT:

The optimization problem for convexity involves the objective function:

opt L N C N N a N
n

c T
i{ }

( ) .= ′ − ′ −λ 1

Recognizing that CT is a real symmetric matrix permits a number of results 
from Bellman (1960, Sec. 4.4, Sec. 7.2) to be accessed. In particular, if A is 
real symmetric then the characteristic roots will be real and have character-
istic vectors (for distinct roots) that are orthogonal. Ordering the characteristic 
roots from smallest to largest, the following bounds apply to the quadratic 
form N′ CT N:

λ1 ≥ λ2 ≥ ... ≥ λt  →  λ1 ≥ N′ CT N ≥ λT .

Morrison (1976, p. 73) develops these results further by recognizing that the 
solution to the optimization problem corresponds to the defining equation 
for characteristic vectors: [CT – λ I ] N = 0, where premultiplication by N′ 
and use of the constraint gives: λ = N′ CT N. Hence, for the maximum (and 
minimum) characteristic roots of CT , the optimum shift vector is the charac-
teristic vector associated with that characteristic root.



Immunization Bounds, Time Value and Non-Parallel Yield Curve Shifts 353

references

Balbas, A. and A. Ibanez (1998), “When can you Immunize a Bond Portfolio?”, 
Journal of Banking and Finance, 22: 1571-1595.

Barber, J. and M. Copper (1997), “Is Bond Convexity a Free Lunch”, Journal 
of Portfolio Management,  24: 113-119.

Barber, J. and M. Copper (1998), “Bond Immunization for Additive Interest 
Rate Shocks”, Journal of Economics and Finance, 22 (Summer/Fall): 
77-84.

Barber, J. and M. Copper (2006), “Arbitrage Opportunities and Immunization”, 
Journal of Economics and Finance, 30: 133-139.

Bellman, R. (1960), Introduction to Matrix Analysis, New York: McGraw-Hill.

Bierwag, G., I. Fooladi and G. Roberts (1993), “Designing an immunized port-
folio: Is M-squared the key?”, Journal of Banking and Finance, 17: 1147-
1170.

Bowden, R. (1997), “Generalizing Interest Rate Duration with Directional Deriva-
tives: Direction X and Applications”, Management Science, 43: 198-205.

Boyle, P. (1978), “Immunization under stochastic models of the term struc-
ture”, Journal of the Institute of Actuaries, 108: 177-187.

Chambers, D., W. Carleton, R. McEnally (1988), “Immunizing Default-Free 
Bond Portfolios with a Duration Vector”, Journal of Financial and Quan-
titative Analysis, 23: 89-104.

Chance, D. and J. Jordan (1996), “Duration, Convexity and Time as Components 
of Bond Returns”, Journal of Fixed Income, 6 (September): 88-96.

Christensen, P. and B. Sorensen (1994), “Duration, Convexity and Time Value”, 
Journal of Portfolio Management, 20 (Winter): 51-60.

Cox, J., J. Ingersoll and S. Ross (1979), “Duration and the Measurement of 
Basis Risk”, Journal of Business, 52: 51-61.

Crack, T. and S. Nawalkha (2000), “Interest Rate Sensitivities of Bond Risk 
Measures”, Financial Analysis Journal, 56 (Jan./Feb): 34-43.

Dattatreya, R. And F. Fabozzi (1995), “The Risk-Point Method for Measuring 
and Controlling Yield Curve Risk”, Financial Analysts Journal, (July/Aug.), 
51: 45-54.

Elton, E., M. Gruber and R. Michaely (1990), “The structure of spot rates and 
immunization”, Journal of Finance, 45: 629-642.

Fabozzi, F. (1993), Bond Markets, Analysis and Strategies (2nd ed.), Upper 
Saddle River, NJ: Prentice-Hall.

Fisher, L. and R. Weil (1971) “Coping with the Risk of Interest Rate Fluctuations: 
Returns to Bondholders from Naive and Optimal Strategies”, Journal of 
Business, 44: 408-431.

Fong, C. and O. Vasicek (1984), “A Risk Minimizing Strategy for Portfolio 
Immunization”, Journal of Finance, 39: 1541-1546.

Hill, C. And S. Vaysman (1998), “An approach to scenario hedging”, Journal 
of Portfolio Management, 24: 83-92.

Ho, T. (1992), “Key Rate Duration Measures of Interest Rate Risk”, Journal of 
Fixed Income, 2 (September): 29-44.



354 Insurance and Risk Management, vol. 75(3), October 2007

Ingersoll, J. (1983), “Is immunization feasible? Evidence from the CRSP data”, 
in G. Kaufman, G. Bierwag and A. Toevs (eds.), Innovations in Bond 
Portfolio Management, Greenwich, CT: JAI Press, p. 163-182.

Kellison, S. (1991), The Theory of Interest, Homewood, IL.: Irwin.

Luenberger, D. (1969), Optimization by Vector Space Methods, New York: John 
Wiley.

Messmore, T. (1990), “The Duration of Surplus”, Journal of Portfolio 
Management, 16 (Winter): 19-22.

Morrison, D. (1976), Multivariate Statistical Methods, (2nd ed.), New York: 
McGraw-Hill.

Navarro, E. And J. Nave (2001), “The structure of spot rates and immunization: 
Some further results”, Spanish Economic Review, 3: 273-294.

Nawalka, S., G. Soto and J. Zhang (2003), “Generalized M-vector models for 
hedging interest rate risk”, Journal of Banking and Finance, 27: 1581-
1664.

Phoa, W. and M Shearer (1997), “A Note on Arbitrary Yield Curve Reshaping 
Sensitivities Using Key Rate Durations”, Journal of Fixed Income, 7 
(December): 67-71.

Poitras, G. (2005), Security Analysis and Investment Strategy, Oxford, UK: 
Blackwell Publishing.

Poitras, G. (2006), “Frederick R. Macaulay, Frank M. Redington and the 
Emergence of Modern Fixed Income Analysis”, in Geoffrey Poitras (ed.), 
Pioneers of Financial Economics, (vol. II), Cheltenham, UK, Edward Elgar.

Redington, F. (1952), “Review of the Principle of Life Office Valuation”, 
Journal of the Institute of Actuaries, 18: 286-340.

Reitano, R. (1991a), “Multivariate Duration Analysis”, Transactions of the 
Society of Actuaries, XLIII: 335-391.

Reitano, R. (1991b), “Multivariate Immunization Theory”, Transactions of the 
Society of Actuaries, XLIII: 393-423.

Reitano, R. (1992), “Non-Parallel Yield Curve Shifts and Immunization”, 
Journal of Portfolio Management, 18 (Spring): 36-43.

Reitano, R. (1996), “Non-Parallel Yield Curve Shifts and Stochastic Immun-
ization”, Journal of Portfolio Management, 22: 71-79.

Sarkar, S. and G. Hong (2004), “Effective duration of callable corporate bonds: 
Theory and evidence”, Journal of Banking and Finance, 28: 499-521.

Shiu, E. (1990), “On Redington’s theory of immunization”, Insurance: 
Mathematics and Economics, 9: 171-175.

Shiu, E. (1987), “On the Fisher-Weil immunization theory”, Insurance: 
Mathematics and Economics, 6: 259-266.

Soto, G. (2004), “Duration models and IRR management: A question of dimen-
sions?”, Journal of Banking & Finance, 28:1089-1110.

Soto, G. (2001), “Immunization derived from a polynomial duration vector in 
the Spanish bond market”, Journal of Banking and Finance, 25: 1037-
1057.



Immunization Bounds, Time Value and Non-Parallel Yield Curve Shifts 355

NoTeS

  1. Reitano can be credited with introducing the terms “partial duration”, “par-
tial convexity” and the “direction vector”.

  2. H.O.T. refers to higher order terms which will be ignored. As Redington 
(1952) recognized, the asset and liability cash flows in this model must not depend on 
interest rates. This assumption in many instances can be problematic. On the liability 
side, many insurance products have embedded options which are sensitive to interest 
rates, e.g., cash surrender values or guaranteed annuity options. On the asset side, many 
bonds have special features, such as call provisions or prepayment options. However, 
even though the analytical discussion centers on default free, straight bonds, this does 
not imply that extending the results to cases where cash flows are interest sensitive is 
not possible, e.g., Sarkar and Hong (2004), Poitras (2005, sec. 6.2).

  3. In applying the Cauchy-Schwarz inequality, Reitano recognizes that the 
extreme bounds are achieved when the vectors are collinear. In effect, the extreme 
yield curve shift is calculated and these values are used to calculate the bounds using 
N*′DT. The result is tighter bounds than those provided by direct application of the 
Cauchy-Schwarz values. In Reitano’s case, the upper and lower Cauchy-Schwarz bounds, 
calculated from the product of the inner products of N and D, are 303.6 and –303.6, 
respectively.

  4. In this formulation, there is a singularity where S(z0) = 0. As such, the classical 
immunization result is a limit point in this model. In addition, because Ct will be negative 
when the liability cash outflow exceeds the asset cash inflow at time t, it is possible for 
either the duration of surplus or convexity of surplus to take negative values, depending 
on the selected portfolio composition and yield curve shape.

  5. Shiu (1990, p. 171-2) demonstrates that, in the classical immunization frame-
work, because the force of interest is constant, the time value will equal a constant.

  6. In actuarial science, the terminology ‘force of interest’ (function) is used in 
place of ‘time value’ (function) which is the terminology used in financial economics, e.g., 
Kellison (1991). Observing that (4) has the appearance of a Taylor series expansion of 
S[z,t], exact determination of the second order Taylor series expansion would involve 
the inclusion of the second derivative information for the time values, i.e., the second 
cross derivative terms and the second derivative with respect to time, e.g., Poitras 
(2005, p. 279-83). Consistent with a priori reasoning, Chance and Jordan (1996) and 
Poitras (2005) indicate that these terms are likely to be relatively small. Hence, only 
information from the first derivative with respect to time is used. Christian and Sorensen 
(1994) demonstrate that in an absence-of-arbitrage framework such terms also disappear.

  7. This is because the size of individual partial durations and convexities depend 
on the size of the cash flow on the payment date. By using key rate durations and inter-
polating yields off key rates, the sawtooth pattern associated with the extreme upper 
and lower bounds will be smoothed out. If key rates are not used, then the nt

* will reflect 
the size of the cash flow in period t, small cash flow periods will have nt

* close to zero 
and large cash flow periods will have relatively large nt

*. Consistent with the approach in 
Tables 1-3 it would be possible to aggregate the partial duration and N elements across 
cash flow dates and report a smaller number of these values.

  8. This par bond curve, also referred to as the swap rate curve, has semi-
annual yields from 6 months to 10 years, i.e., y = (.08, .083, .089, .092, .094, .097, .10, 
.104, .106, .108, .109, .112, .114, .116, .118, .119, .12, .122, 124, .125)′. The 6 month and 
1 year yields are for zero coupon securities, with the remaining yields applying to par 
coupon bonds. This yield curve produces the associated spot rate curve, z = (.08, .083, 
.0893, .0925, .0946, .0979, .1013, .106, .1083, .1107, .1118, .1159, ,1186, .1214, .1243, 
.1256, .1271, .1305, .1341, .1358)′.
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  9. The relevant calculation for the change in surplus value with a shift magnitude 
of ∆i = .01 using the extreme Cauchy bound for the low surplus portfolio would be (.01) 
(97.131) (4.66735) = 4.5334. For the high surplus portfolio the solution is (.01) (8.86) 
(50.75) = 4.49645.

10. To see this, recall that the length of the shift vector is one. As a consequence, 
the sum of the squares will equal one and the square of each n* is the percentage con-
tribution of that particular rate to the extreme directional shift vector.

11. This follows from the previous discussion in section III which identified the 
off-diagonal elements as being equal to zero.

12. In these one factor models, the spot interest rates for various maturities are 
constructed by taking the product of the generated one period interest rates along each 
specific paths, treating each future short term interest rate as a forward rate. This will 
produce the predicted spot rate structure for each path, e.g., Fabozzi (1993, Chp. 13). 
While useful for generating analytical results, it is well known that such processes cannot 
capture the full range of potential term structure behavior. Without restrictions on the 
paths, some paths may wander to zero and the average over all the paths may not equal 
the actual observed spot interest rate curve.

13. These restrictions are imposed in one factor models to generate the term 
structure from the individual paths of the stochastic short term interest rate. Additional 
restrictions are required on the coefficients of the continuous time process to satisfy 
absence of arbitrage. Barber and Copper (2006) provide the relevant restrictions for 
popular affine term structure models such as CIR, Vasicek and Hull-White. Such restric-
tions would further reduce the number of elements in the set of admissible shifts.

14. For programming reasons, the duration of surplus is not exactly zero. The 
closeness to zero of the duration of surplus can be evaluated by examining the absolute 
value of individual partial durations. For example, in Table 1 the largest absolute values 
are 85.115 and 43.742. In contrast, the sum of the partial durations – the duration of 
surplus – reported in Table 4 is –0.102. Getting closer to zero would involve changing 
asset market values at the fourth decimal place.


