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This book is not only an excellent translation and study of the extant Greek
and Arabic sources for Diophantus’ Arithmetica, it is also an important
piece of scholarship in the history of premodern mathematics. The historio
graphic significance of this book comes from both its argument for the place
of the Arithmetica in our understanding of the history of algebra and from
the methodologies that the authors employ in order to make their case.
The Arithmetica was originally composed of 13 books, of which four are
completely lost. There are six surviving books in Greek, preserved in 32
manuscripts, of which the earliest is from the 11th century and most are
from the early modern period [18]. The treatise was translated into Arabic in
the ninth century by Qusṭā ibn Lūqā, and four of the books of this translation
survive in a single 12thcentury manuscript, discovered by Fuat Sezgin in
1968 [22, 25]. In its various versions, the treatise was read by mathematicians
as a work of algebra until the early modern period—as is made abundantly
clear in many texts written by premodern mathematicians who studied
the work. It was not until the 17th and 18th centuries that it began to be
read as a work of number theory. Later, it was read as work of algebraic
geometry—or at least as amenable to such a reading [Rashed and Houzel
2013]. Furthermore, historians of mathematics also read the Arithmetica as
a work of algebra until fairly recently, when the contrary view was taken:
that algebra proper was a purely ArabicIslamic development, from which
perspective the Arithmetica must then be regarded as a precursor in a more
purely arithmetic tradition.

∗ Nathan Sidoli is professor of the history and philosophy of science at the School
for International Liberal Studies, Waseda University, Tokyo. His research focuses
on the Greek mathematical sciences and their further development in Arabic sour
ces. He is author of Thābit ibn Qurra’s Restoration of Euclid’s Data (2018, with Yoichi
Isahaya), and The Spherics of Theodosios (2023, with R. S. D. Thomas).
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This relatively recent view of the Arithmetica derives from the claim that
algebra was an entirely new science developed in the classical Islamic period
and originally canonized in alKhwārizmı’̄s Concise Book on the Calculation
of Restoration (al-jabr) and Confrontation (al-muqābala), usually simply
called his Algebra [Rashed 2009]. Indeed, modern European languages
derive their words for algebra from Latin versions of alKhwārizmı’̄s work,
such as Robert of Chester’s 12thcentury translation titled Liber algebrae et
almucabola [Karpinski 1915].
The emphasis on alKhwārizmı’̄s Algebra as the origin text of a new dis
cipline that we call algebra derived from scholarship, particularly that of
Roshdi Rashed [see, e.g., Rashed 1994], which correctly highlights the
fact that alKhwārizmı’̄s work centers the algebraic *equation* and the
various forms that this *equation* can take.1 I believe that the view that
algebra proper was originally an ArabicIslamic development is still main
stream among historians of mathematics: we find such a view expressed,
for example, in a fairly recent book by two eminent historians of mathemat
ics—Taming the Unknown: A History of Algebra from Antiquity to the Early
Twentieth Century [Katz and Parshall 2014, 32–173, esp. 137, 139, 158].
The authors of the book under review, however, along with their colleagues
and coauthors, have been arguing against this view for more than a decade.
Indeed, while it is true that alKhwārizmı’̄s Algebra centers the algebraic
*equation*, this does not necessarily mean that algebraic problemsolving
techniques were not already in use when alKhwārizmı ̄ composed his text—
as is, indeed, suggested by the fact that he does not even bother to explain the
two most important algebraic operations, namely, aljabr and almuqābala.
In this new book, we have the opportunity to read the culmination of the
authors’ work to reintroduce a reading of Diophantus as an algebraist to
historians of mathematics. Their arguments for this can be divided into
three main methodological approaches:

(1) extensive use of medieval mathematical scholarship, particularly
that in Arabic;

1 In this review, I shall write “*equation*” to refer to the principal relation of a pre
modern algebraic solution which the ancient and medieval authors discuss using
expressions involving equality. In fact, there are many other relations stated in their
texts that we can also interpret as equations but that they themselves do not expli
citly call equations. Furthermore, I will occasionally also use the word “equation”
in the normal sense, which should not be confused with the *equation* of a pre
modern algebraic solution.
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(2) a close reading of the ancient and medieval sources themselves; and
(3) the use of a fairly restricted conceptual framework that Oaks has

termed “premodern algebra”.

1. Use of medieval scholarship
One of the keys to the reading presented in this book is the use of mathe
matical scholarship produced much later than Diophantus (ca ad 170 –370)
and sometimes in languages other than Greek. Some of these later texts are
commentaries on Diophantus, but most are original works of premodern
mathematicians that advance their field in various ways, in the course of
which they discuss the fundamental principles and practices of the field.
In particular, this book makes extensive use of mathematicians working
in Arabic who are discussing concepts and techniques that are also found in
the Arithmetica. Although such a methodology should be applied carefully
because later mathematicians may be introducing innovations not found in
earlier sources, since the thought and approach of later medieval mathe
matical scholars’ were much closer to that of the earlier sources than our
own, their insight might well elude us if we only translated the ancient
sources directly into our own idiom. I believe that the scholarship in this
book presents a good example of how the comments, discussions, and math
ematical procedures of later scholars who worked in a similar mathematical
style and who were themselves thoroughly educated in the ancient methods
may be used to shed light on previous developments.

2. Close reading and translation
Another important approach taken in this book involves a close reading
of the Greek and Arabic sources themselves. This takes place in three stages
of translation:

(1) Initially, the two texts are translated very literally, almost to the point
of obscuring the mathematical sense from the modern reader. (This
translation is even more literal than the French translations in Ver
Eecke 1926 and Allard 1980.) For example, the Greek word «δύναμις»
(lit. power, faculty) is rendered with “Power” and the Arabic term

« لام » (lit. property, wealth) is simply transliterated as «Māl». This
serves to highlight how alien these terms are to our thinking and
to emphasize that we are dealing here with a specialized vocabulary.
Furthermore, all of the many stylistic differences between the Greek
and the Arabic are preserved, which makes it clear that we will need
a conceptually coherent reading of the two superficially different
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sources in order to understand how they both convey the same
mathematical procedures and ideas.

(2) In the next stage, and especially in the commentary, part 3, an
abbreviating symbolism is introduced that is directly modeled on
that described by Diophantus in his introduction, found somewhat
inconsistently employed in the Greek manuscript tradition of the
text and much used by the Byzantine commentators on Diophantus’
work. The abbreviations are based directly on the words used in
(the English translation of) the two different texts, which makes
the abbreviations themselves different for the Greek and the Arabic
texts. For example, in Arith. 2.11 [304, 542, from Greek], “1 Power, 16
units lacking 18 Numbers…are Equal to 1 Power, 1 unit” is rendered

1P 16u ℓ 8N = 1P 1u,

while in, Arith. 5.13 [388, 634, from Arabic], “nine Māls and fifteen
Things and nine units…are Equal to the nine Māls and thirty units”
becomes

9M 15T 9u = 9M 30u.

When we see that in these types of expressions the Ns and Ts, or the
Ps and Ms, are interchangeable, we can better understand how the
Greek and Arabic texts, although their expressions are apparently so
different, report the same types of mathematical procedures—at
least in terms of the basic problemsolving techniques. Furthermore,
it should be noted that, although these are symbols in the abstract
semiotic sense, they are not symbols in the way that we usually
employ the term in mathematics. That is, they do not represent math
ematical objects or operations, but rather simply stand in for the
words in the text. They serve as abbreviations for verbal expressions.

(3) In the final stage of transformation, which is standard for all studies
of the Arithmetica, the expressions in the text are also translated
into the sorts of algebraic expressions that we learn in school. This
is done somewhat differently by different scholars, but, for example,
the two previous abbreviations might be set respectively to

𝑛2 + 16 − 8𝑛 = 𝑛2 + 1,

and

9𝑡2 + 15𝑡 + 9 = 9𝑡2 + 30.

Although we can, and often should, make such transformations in
order to help ourselves to understand the mathematical situation
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better, the authors caution us to observe some crucial differences be
tween the meanings conveyed by the modern symbolic expressions
and the ancient abbreviations (here transliterated).
∘ In the first place, the modern use of either “+” or “−” implies an

operation, whereas operations are actually expressed differently
by Diophantus. Expressions like 1P 16u ℓ8N or 9M 15T 9u,
however, are simply aggregates of numbers specified by their
type (kind, or species) and enumerated by how many of each
type are in the aggregate, some of which may be in deficit
or owing.

∘ Second, the “N”s, “T”s, Ps, and “M”s of the abbreviations in
dicate the words in the text, which themselves name the sort of
number that is being counted—a kind of unit, in the generic
sense, of what is being enumerated. Our 𝑛 or 𝑡, on the other
hand, are symbols that indicate numbers—in the case of the
Arithmetica, 𝑛, 𝑡 ∈ ℚ. That is, in “9M”, the “9” counts a certain
type, or species, of number which is called a māl or a dunamis,
whereas in 9𝑡2 the “9” is a scalar multiple of another number,
namely, 𝑡2. Of course mathematically, these give the same re
sults, but conceptually they are quite different. Many of the
detailed statements found in texts of premodern algebra cannot
be understood if this distinction is not made.

Furthermore, the enunciations can also be translated into modern symbols,
as has been done by all modern editors and translators of the text [67]. For
example, using a notation modeled on that of Sesiano 1982, the enunciation
of Arith. 2.11 [543] is given as:

𝑥 + 𝑎 = □

𝑥 + 𝑏 = □′

and that of Arith. 6.13 [633] as: 

𝑚𝑥2 + 𝑎 = 𝑦 + 𝑧

𝑥3 + 𝑦 =

𝑥3 + 𝑧 = ′

where □ is any rational square number, and is any rational cube num

ber. It should be clear these enunciations are much easier for us to grasp
than the sometimes lengthy verbal expressions found in the text, but the
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authors caution that these enunciations use operations and results, as op
posed to aggregates, involving a specialized naming system and statements
of equality that are used to express the algebraic *equation*. Hence, the
symbols that we use to summarize the enunciations are conceptually rather
different from what is stated in the text, although mathematically they lead
to the same results.

3. Premodern algebra
The final methodological component of the argument that the Arithmetica
should be read as a text in algebra comes from framing this debate in terms
of a historiographic framework developed by Oaks, which he calls premod
ern algebra. Oaks defined and discussed premodern algebra in six papers as
a way of understanding the technical coherence of a certain type of mathe
matical practice reported in medieval Arabic, medieval Latin, and early
modern European texts. Following, and somewhat concurrently, Christiani
dis has also argued in three papers, one written with Oaks, that Diophantus’
Arithmetica is part of the tradition of premodern algebra [26–27].
The significance of defining premodern algebra as a historiographic cate
gory is that it helps us refine the scope of debates around the role of algebra
in premodern mathematics. As is well known, historians of mathematics
have engaged in long, and sometimes acrimonious, debates about the extent
to which algebra and algebraic thinking have played a role in premodern
mathematical texts and practices. One reason why there has been so little
resolution to this debate may be that the terms involved—and in particular
that of “algebra” and “algebraic”—are overly broad and understood differ
ently by different scholars. For example, we might consider “algebra” from
various perspectives to state equations involving unknown terms; to make
statements of certain identities or mathematical laws; to use variables in
order to represent numbers in computation and reasoning; to treat the sorts
of structures that result from defining operations between the members
of a set; and so on.
Since some of these ideas show up differently in different areas of premod
ern mathematics, while some of them are absent altogether, any attempt to
make our terms more precise should be welcomed by historians of math
ematics. One example of narrowing the focus to good effect can be found in
Leo Corry’s studies of what we would call the distributive law of multiplica
tion over addition, 𝑥 ⋅ (𝑦 + 𝑧) = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑦, in medieval versions of Euclid’s
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Elements.2 This work examines the various ways in which distributive prop
erties are discussed and used by medieval mathematicians in texts that they
regarded as dealing with geometry, arithmetic, and algebra. Another way to
limit the scope of the discussion is to start out with the problemsolving
methods that the medieval mathematical scholars themselves referred to
as “algebra” and to describe the characteristics of this practice. Such an
approach leads to the articulation of premodern algebra.
The use of premodern algebra as a historiographic tool is then necessarily,
and intensionally, of limited scope. As a mathematical practice, it was a
specialized technique for solving numerical problems and was not the only
such technique available to premodern mathematicians. The solution of
a numerical problem through premodern algebra involved the following
essential features:

∘ The mathematician judiciously, but essentially arbitrarily, assigns
terms involving specialized names that are drawn from a list of
names designating a single unknown and its powers as well as
the unit, to one or more of the variables of a numerical problem.
Diophantus says that each of these technical names is “an element
of the arithmetical theory” [276].

∘ Any operations implied in the statement of the problem are then
discharged leading to the statement of an algebraic *equation* in
a single unknown. (There are situations where another algebraic
*equation* in another unknown is established as a sort of auxiliary
[e.g., Arith. 4G.16 and 4G.17],3 but in premodern algebra there is no
technical vocabulary for stating *equations* involving more than
one unknown, so that terminology for other unknowns had to be
improvised or simply recycled.) Whereas there may be, and often are,
variables involved in the statement of numerical problems, variables
do not appear in the completed algebraic *equation*.

∘ The *equation* is then solved using a limited set of operations
that are performed directly on the whole *equation* and are not

2 See Corry 2021, which cites his earlier studies.
3 The superscript “G” indicates that this book is numbered “four” in the Greek text.

Because there are books numbered “four”, “five”, and “six” in both the Greek and
Arabic texts, given that those in the Arabic are believed to be the actual fourth, fifth,
and sixth books of the treatise, this notation is used for the later Greek books.
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reduced to fundamental arithmetic operations. The two most im
portant operations are those of aljabr and almuqābala, which are
defined, although not so named, by Diophantus in the introduction
to Arithmetica 1 as follows: “to add the lacking species on both sides,
until the species on each side become extant” and “to subtract likes
from likes on either side, until it results in one species equal to
one species” [279].4

∘ Another operation may be defined at the beginning of Arithemetica
book 4, which states:

If…we end up with one species of these species…Equals another
species, we should divide everything by one of the lesser in degree of
the two sides so that it results in one species Equals a number. [330]

∘ The solution of the *equation*, to which Diophantus himself gives
relatively little attention, produces some numerical value for the
unknown. This value is then used to solve the arithmetic problem
that was originally posed.

This basic machinery is used in algebraic texts in Arabic, Latin, and early
modern European vernacular languages.
With this limited description we can see that premodern algebra was not
used to state identities, to relate variables or describe geometric lines (in
cluding curves), or to state physical laws or principles. It was certainly not
used to study the structures that are determined by operations between
the members of certain sets. The argument that the Arithmetica is a trea
tise in the tradition of premodern algebra is based on the claim that this
highly structured problemsolving technique forms the core of Diophantus’
solutions to the arithmetic problems that he proposes.
To understand this assertion better, it may help to go through an example
of the role of premodern algebra in a problem from Diophantus’ text. For
this purpose, I will forego the abbreviations of the ancient text and use a
notation that is a blend of that used by the authors and modern symbols for
the algebraic problemsolving procedure, which I hope will make it easier
for modern readers unfamiliar with the practice of premodern algebra to

4 The ordering of aljabr first and almuqābala second, which is canonical in Arabic
texts, probably derives, although not as a direct translation, from the way in which
Diophantus expresses these two operations when he states them together at the
same time [Sidoli 2022].
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follow the discussion, but which is not mathematically different from the
abbreviations given by the authors in their commentary.
The enunciation of Arith. 2.12 reads as follows: “To subtract the same
number from two given numbers and to make each of the remainders
a square” [305]. This is summarized by the authors in their commentary
as follows [544]:

𝑎 − 𝑥 = □

𝑏 − 𝑥 = □′

where 𝑎, 𝑏 ∈ ℕ (rarely, assumed values may be proper parts of the form 1⁄m
where 𝑚 ∈ ℕ, but not here). That is, where we have been assigned, or may
choose, 𝑎 and 𝑏 arbitrarily, we want to find some other number—in this
case 𝑥 ∈ ℚ—such that subtracting it from 𝑎 and 𝑏 individually, the results
are both squares. Note that these are statements of operations and results.
This is, in fact, a problem of arithmetic, not premodern algebra, and the
authors emphasize that although we can denote these conditions using
symbolic equations, they are not expressed as *equations* by Diophantus
and they are different from the *equation(s)* of the algebraic procedure
that will lead to a resolution of the arithmetic problem.
Diophantus then sets 𝑎 := 9 and 𝑏 := 21, so that the arithmetical problem
becomes:

9 − 𝑥 = □ (1)

21 − 𝑥 = □′. (2)
It is important to point out that although we name the unknown number 𝑥
in our summary, this is not yet named in the text; so we have not yet begun
the part of the problemsolving procedure that uses premodern algebra.
This begins in the next stage when we name the number sought.
The text then reads,

whatever the square may be that I subtract from each of them, I assign (the
soughtafter number) to be the remainder; indeed, when this is subtracted, it
leaves the square. [305]

That is, Diophantus is simply pointing out that he can assign the unknown
number of the arithmetical problem, our 𝑥, to be whatever remains from
subtracting the two different squares from the two given numbers, because

9 − (9 −□) = □

or

21 − (21 −□′) = □′.
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That is, considering equation (1) above, the simplest choice for the algebraic
unknown, which we denote with 𝑛, would be to assign 

𝑥 := 9 − 𝑛2. (3)

This assignment begins the premodern algebraic procedure.
Diophantus then points out that it is also necessary to subtract 9−𝑛2 from 21
so as to make a square because of equation (2) above, namely, 21 − (9 − 𝑛2),
must be a square, which leads to the first *equation* actually mentioned in
the text. This is, in fact, what the authors call a forthcoming equation, namely,

[21 − (9 − 𝑛2) = □′]

𝑛2 + 12 = □′. (4)

It is “forthcoming” because neither the square □′ nor its side have been
named in the terms of the algebraic problemsolving procedure—Diophan
tus’ “arithmetic theory”—so that we are free to assign them in such a way
as to render the problem amenable to solution. (The fact that □ and □′

are initially neither stated as given in the enunciation, nor named in the
algebraic naming system, is the reason why they are denoted with this
special notation, which was used by Tannery 1893–1895.)
Now, Diophantus uses a technique that the medieval Islamic mathemati
cians called alistiqrā’ [784–794] but that he himself neither names nor
explains well, although he does give some hints as to how it functions. In
essence, it involves choosing a side for the square □′ in such a way that
the *equation* thus resulting from equation (4) simplifies to two terms of
consecutive powers (in practice usually eliminating the units or the terms
of squared or higher powers). Here, Diophantus says,

I form the square from 1 Number lacking so many units so that their square is
greater than 12 units; indeed, in this manner, in either part one species will
again be left equal to one species. [305]

That is, he signals his intention to eliminate one of the species, namely, the 𝑛2,
and to produce an *equation* lacking no units. Then, since 32 = 9 < 12
and 42 = 16 > 12, the simplest side that he can choose is 𝑛 − 4, so that
square □′ becomes (𝑛 − 4) (𝑛 − 4) = 𝑛2 − 8𝑛 + 16, which can be set equal
to 𝑛2 + 12 by equation (4). That is, as he states, “1 Power, 16 units lacking 8
Numbers…are equal to 1 Power, 12 units” [305]. This is the fully established
algebraic *equation* in one unknown, namely,

𝑛2 + 16 − 8𝑛 = 𝑛2 − 12.
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He then simplifies this *equation* taking “likes from likes” so that
8𝑛 = 4

or

𝑛 = 4 8ths.

Diophantus then points out that this must be subtracted from 9, although
he states neither the value of the unknown number, our 𝑥, nor those of the
two squares, our □ and □′. (In fact, I believe that the authors’ summary of
the final step of this problem on p. 544 contains a typographic error: “576⁄64”
should be “560⁄64”.)
Since 9 = 72⁄8 = 576⁄64, it suffices to take away 16⁄64 (= (4⁄8)2 = 𝑛2), which are
the statements with which Diophantus concludes the problem. Although
Diophantus finishes here, we may return from the algebraic result to the
original assignment, equation (3), so as to flesh out the full solution to the
arithmetic problem. In fact, the originally assigned unknown number (as
opposed to the unknown of the algebraic *equation*), our 𝑥, is 576⁄64− 16⁄64 =
560⁄64, although Diophantus does not state this.
Hence, since 9 = 576⁄64 and 21 = 1344⁄64, the original arithmetic conditions
are satisfied as follows:

576/64 − 560/64 = 16/64 = (1/2)2 = (2′ ) (2′ ),

1344/64 − 560/64 = 784/64 = (7/2)2 = (3 2′ ) (3 2′ ).

We should remember, however, that the 9 and the 21 are also arbitrary,
and various choices made in the course of the solution were motivated
by these given numbers, so that there are any number of potential solu
tions to the original arithmetical problem. In this way, we see that the
premodern algebraic procedure, which centers on the establishment and
solution of a determinate *equation* involving specially named terms in
a single unknown, serves as a mathematical tool for producing solutions to
an indeterminate arithmetical problem.
With this as an introduction to the framework of premodern algebra, I now
offer the following outline of the book under review.

4. Outline

Part 1. Introduction [1–271]

Diophantus and his work [3–25] A discussion of our almost complete lack
of knowledge of Diophantus’ life, situated sometime between ca ad 170
and ca ad 370, is followed by a short description of his known works, a list
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of the manuscripts of the Arithmetica and their stemmata (from Tannery
1893–1895; Allard 1980; and Acerbi 2011), and an overview of all editions
and previous translations of the text.

Numbers, problem solving, and algebra [26–79] This introduction to
premodern algebra, organized topically, is crucial for readers unfamiliar
with this historiographic generalization.

(1) A historiographic sketch of the history of scholarship on premodern
algebra, distinguishing it from other premodern methods of solving
for unknown values, such as those found in Babylonian or Indian
sources [Høyrup 2002; Plofker 2009, 191–196].

(2) An introduction to the types of numbers used in premodern arith
metics, which form the fundamental conceptual background for
understanding the mononomials and polynomials of premodern
algebra as numbers. A common category of number in premodern
sources used to be called a “complex” or compound number. Num
bers such as 13 12′ 45′ hours (in value, 13 + 1⁄12 + 1⁄45), 23 51 20
degrees (in value, 23 + 51⁄60 + 20⁄602), 173 less 8′ degrees (in value,
173 − 1⁄8), 8 livres 8 sols 8 deniers (in value, 8 + 8⁄20 + 8⁄12 ⋅ 1⁄20),
and so on are all examples of compound numbers.5 Each of the
numerals in these expressions states, or enumerates, a different
kind of thing—a number of hours, a proper part, a number of de
grees, of sexagesimal parts, of a certain unit of currency, and so on.
The overall value referred to in these expressions is compounded
from all of the enumerated terms. The ways of computing with
such compound numbers were discussed in arithmetic texts and
commentaries throughout the ancient, medieval, and early modern
periods. The crucial point of this section is that the polynomials
of premodern algebra are conceptually the same as these compound
numbers. An expression like “1 Power 64 units lacking 16 Num
bers” denotes a compound number made up of one of those things
whose units we are calling “Power”, 64 of those things whose units
are the unit (but we might use other terms), and in deficit by 16
of those things whose units we are calling “Number”. Hence, the
words “unit”, “Number”, and “Power” are not themselves numbers
like the 𝑛 in our expression 𝑛2+ 64 = 16𝑛, which has the same math
ematical structure as “1 Power 64 units lacking 16 Numbers”, they
are simply the designations of the type of number enumerated by
the preceding numerical value. Actual calculations could be carried

5 See Historia Mathematica 59 (2022) for recent historical work on such numbers.
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out using a number of different methods, but these are usually not
covered in texts on premodern algebra.

(3) A general discussion of numerical problemsolving shows that pre
modern algebra was just one of a number of different techniques
that could be utilized to solve such problems.

(4) The use of premodern algebra as one possible type of solution to
a numerical, or arithmetical, problem is explained. (See also (6)
below.)

(5) Monomials, polynomials, and the *equation* in premodern alge
bra are defined. In particular, it is stressed that a polynomial in
premodern algebra does not contain any operations but is rather
an aggregate made up of various types of numbers such as simple
numbers or units, unknown Numbers or Things (𝑛), Powers or Māls
(𝑛2), and so on (𝑛3, 𝑛4, and so on), any (aggregate) of which may
be in deficit (lacking, less, or −), and which aggregate is itself a
compound number in the sense discussed above. A forthcoming
equation is an important subcategory of the algebraic *equation*,
namely, one in which a monomial or polynomial is asserted to be
equal to a square, or cube, that has, as of yet, no terms designated in
the algebraic naming system.

(6) The procedure of an algebraic solution itself is described in four
stages:

(i) the conditions of the arithmetical problem are converted into an
algebraic *equation* by assigning names to the unknown terms
of original problem and discharging any operations implied
by the conditions of the problem;

(ii) the *equation* is simplified to a standard form using the opera
tions of aljabr and almuqābala, and for which Diophantus
used expressions like “Let a common, the lacking, be set out”
and “Let the same be subtracted from the same”;

(iii) the simplified *equation* is solved for the single unknown;
(iv) the unknowns of the original arithmetical problem are com

puted, using the now known value named in the algebraic
assignment and computed using the algebraic *equation*.

(7) The next section treats the difference between the enunciation and
the algebraic *equation*, pointing out that while the problems are
often indeterminate, the *equations* almost never are, and discusses
the various techniques for assigning names to the unknowns.

(8) A final section discusses the notation used in the Greek books of the
Arithmetica and argues that it is essentially a way of abbreviating the
expressions in the text, so that there is no fundamental conceptual
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difference, between the abbreviated symbolism of the Greek text
and the fully rhetorical expressions of Qusṭā’s translation. This im
plies that Nesselmann’s tripartite division of algebra into rhetorical,
syncopated, and symbolic [1842] does not help us to understand the
practices of premodern algebra.

History [80–230] This section gives a historical account of the Arithmetica
as a text of premodern algebra, describing both the mathematical contexts
in which the text was produced and read along with particular usages and
readings of the text found in other texts of premodern algebra. (This is the
longest section of the introduction and I mention only some highlights.)
The authors revive the now unpopular view that Hipparchus wrote a text on
algebra in the 2nd century bc, which is asserted in the Islamic bibliographic
literature. They also discuss three algebraic problems on the 2ndcentury ad
papyrus P.Mich.inv. 620, which was probably written before the Arithmetica.
Such discussions make it clear that premodern algebra was a mathematical
practice predating Diophantus’ work.
After a treatment of the ancient accounts of Diophantus and his work,
including some problems solved using “Diophantine numbers”, the authors
discuss premodern algebra in the classical Islamic period, before the Arith
metica was translated into Arabic. This provides an introduction to the
context as well as the Arabic technical terminology of the translation by
Qusṭā ibn Lūqā. This is followed by a lengthy survey of the many mathe
maticians of the medieval Islamic period who discussed the Arithmetica
or solved problems that derived from the text.
The authors then turn to scholarship on Diophantus in the Byzantine Em
pire, which produced the most important Greek sources for the text as
well as important comments and scholia on them. This is followed by a
review of the early modern discovery of the text, its translation into Latin, its
Greek editio princeps, and the integration of Diophantus’ work into the early
modern tradition of premodern algebra, the practice of which predated any
study of Arithmetica.
The section concludes with a brief account of the beginning of modern
algebra, adumbrated in the work of François Viète. The examples of the
transmission of the Arithmetica in both the ninthcentury Islamic civi
lization and the European Renaissance shows that premodern algebra
was a mathematical practice that could be, and was, transmitted indepen
dently of canonical texts, probably through the direct oral transmission
of mathematical practices.
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Throughout the whole section, particular attention is paid to the great variety
of terms used for the “unit” and the unknown and its powers (𝑛, 𝑛2, 𝑛3, and
so on) in the ancient and medieval sources.

Structure and language of the Arithmetica [231–266] In the Arithmetica,
the four stages of an algebraic solution are nestled inside the structure of the
overall arithmetical problem, which is itself modeled on that of propositions
in Euclid’s Elements. The technical terminology used in both the Greek and
Arabic texts is defined and discussed.

Didactic aspect of the Arithmetica [267–271] This section argues that
the Arithmetica shows evidence of Diophantus’ overall concern with the
didactic presentation of material by focusing on:

(1) explicit statements that he makes in this regard,
(2) various explanations of assignments and procedures that he sprin

kles throughout his problems,
(3) the occasional false start (which the authors call a “constructive

deadend”) that he includes in the text before giving the successful
solution, and

(4) the over arrangement of the problems, which allows the reader to
learn various techniques of solution as a sort of “toolbox” that can
be used in later problems.

Part 2. Translation [273–506]

The English translation begins with the first three Greek books, 1–3, fol
lowed by books 4–7 from the Arabic, and concluding with the Greek books
4G, 5G, and 6G. The translation is highly systematic and literal. The technical
terms are rendered with English words having the literal meanings of those
terms (and a transliteration), and the numbers are even translated with
digits for the Greek books and with words for the Arabic books, just as
we find in the original sources. While I agree that this is the best choice,
given that the technical terminology and numerals are not homogenized
across the Greek and Arabic books, I suspect that many readers will take
some time to adjust to these differences. A deliberate use of capitalization
and italics allows the translation to remain literal, while still highlighting
the way that the naming practice of premodern algebra, what Diophantus
calls the “arithmetic theory”, is employed in the treatise. The translation
from the Greek text is enumerated in the margin with the pagination of
Tannery’s edition [1893–1895]; that from the Arabic is enumerated by the
line numbers of Sesiano’s edition [1982] at the start of each paragraph of
the English translation.
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Part 3. Commentary [507–778]

A discussion of the abbreviating notation is followed by a symbolic summary
of each problem. The enunciation is provided with a statement in modern
symbols that the authors stress is not faithful to the intent of the original
but that is nevertheless useful to modern readers for understanding the
mathematical idea of the problem. This is then followed by a symbolic
treatment, using the notation developed by the authors that is simply an
abbreviation of what the text actually says of the assignments, operations,
and finally the *equation(s)* that can be used to produce the numbers that
will solve the problem. The symbols used for the algebraic part of each
problem are the first letters of the technical terms in Greek and Arabic, so
that the principal symbols, although not their mathematical meanings, are
different for the Greek and the Arabic books. For some problems the authors
provide mathematical, historical, and philological remarks, including some
translations of medieval scholarship on the text.

Part 4. Appendices [779–840]

Appendix 1 [781–783] A translation of four missing problems of the Greek
book 5G, reconstructed by E. S. Stamatis.

Appendix 2 [784–798] A discussion of some techniques for solving
indeterminate problems in premodern algebra:

(1) The first section deals with the technique called alistiqrā’ by the
medieval Islamic algebraists, which involves assigning an asofyet
unnamed square (or cube) in such a way that some of the terms, such
as the squares or the units, drop out of the *equation* that is thus
established. There follows a list of all of the problems that involve
forthcoming *equations* solved by alistiqrā’ in the Arithmetica,
along with the assignment of the square, the cube, or its side that
effects the requisite elimination.

(2) The second section treats a number of techniques that are used to
handle simultaneous forthcoming *equations*, of which one side is
an asofyet unnamed square. These techniques are discussed and
classified, and a list of all the problems that employ them is provided,
stating the forthcoming *equations*, the approach used, and the
key to the solution.

Appendix 3 [799–811] Glossary of the English terms used to translate the
technical terminology of both the Greek and Arabic texts.

Appendix 4 [812–840] Conspectus of all the problems using modern
symbols (as seen in the example discussed above), which helps the modern
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reader to understand at a glance what the problems propose.

Bibliography and Index [841–876]

5. Conclusion
Following this overview of the entire book, I should perhaps raise some
minor criticisms. In a book of this size the careful reader is bound to find a
number of typographic errors. (I doubt that the publisher would be able
to find a copyeditor who could read such a text with the care necessary
to catch all of them.) Such typos are especially found in the abbreviations
that the authors use to summarize the actual steps of the mathematical
argument. For example, there are two such typos on p. 785 in lines 22 and
30, which one will notice as soon as one converts the abbreviations into
the modern symbols with which we are more familiar. Furthermore, there
is some confusion in the references for papyri. For example, when the well
known P.Mich.inv. 620 (P.Mich. III.144, now available online in high quality
color images) is introduced on p. 70, it is referenced as “Problem III.iv,
edited and translated in (Winter 1939, 39, 44–45)”. Moreover, when the
authors discuss this papyrus, now named more fully on pp. 102–110 and
give a valuable interpretation of its mathematics as belonging to premodern
algebra, they continue to credit J. G. Winter with the editorial work on
P.Mich.inv. 620. Winter, however, was the editor of the whole of volume
3 of the Michigan Papyri series, while the editor of the papyri concerning
mathematical subjects in this volume, including the astral sciences, was F. E.
Robbins, with each such article being signed, somewhat cryptically, “F.E.R”.
These minor issues asides, this book represents a major accomplishment
in the historiography of premodern mathematics. It presents a compre
hensive and coherent reading of both the Greek and the Arabic texts of
Diophantus’ Arithmetica that allows us to give a systematic account of
Diophantus’ mathematical approach and problemsolving techniques that
remains consistently close to what we read in the sources themselves. It
helps us to understand the Arithmetica as a book in a long tradition of
premodern algebra, which although practiced by some seems not to have
become mainstream among philosophically trained Greek mathematicians
but eventually developed into a focused area of study at the hands of the
numerous algebraists of classical and medieval Islamic societies. Finally, it
provides a valuable example of the ways in which, for the premodern period,
much later texts that are sometimes produced in a different language can be
used to shed light on earlier mathematical practices and ideas. I believe that
this book makes a valuable contribution to our understanding of premodern
mathematics and to the history of mathematics more generally.



18 Nathan Sidoli

bibliography

Acerbi, F. 2011. Diofanto. De polygonal numeris. Pisa.
Allard, A. 1980. Diophante d’Alexandrie. Les Arithmetiques. Histoire du

text grec, édition critique, traductions et scolies. Tourpes.
Corry, L. 2021. Distributivitylike Results in the Medieval Traditions of

Euclid’s Elements: Between Arithmetic and Geometry. Cham.
Høyrup, J. 2002. Lengths, Widths, Surfaces: A Portrait of Old Babylonian

Algebra and Its Kin. New York.
Karpinski, L. C. 1915. Robert of Chester’s Latin Translation of the Algebra

of alKhowrizmi. New York.
Katz, V. J. and K. H. Parshall. 2014. Taming the Unknown: A History of

Algebra from Antiquity to the Early Twentieth Century. Princeton.
Nesselmann, G. H. F. 1842. Versuch einer kritischen Geschiche der Algebra.

Thiel 1: Die Algebra der Griechen. Berlin.
Plofker, K. 2009. Mathematics in India. Princeton.
Rashed, R. 1984. Diophante. Les arithmétiques. Paris.
Rashed, R. 1994. The Development of Arabic Mathematics: Between Arith

metic and Algebra. Dordrecht. Trans. by A. F. W. Armstrong of Entre
arithmétique et algèbre. Recherches sur l’histoire des mathématiques
arabes. Paris, 1984.

Rashed, R. 2009. AlKhwārizmı̄: The Beginnings of Algebra. London.
Rashed, R. and C. Houzel. 2013. Les «Arithmétiques» de Diophante.

Berlin.
Sesiano, J. 1982. Books IV to VIII of Diophantus’ Arithmetica in the Arabic

Translation Attributed to Qustā ibn Lu̅qāı. New York.
Sidoli, N. 2022. “Translations in the Mathematical Sciences”. Pp. 39–56 in

Brentjes, S.; B. Bowler; and R. Brentjes edd. Routledge Handbook on
the Sciences in the Islamicate World: Practices from the 2nd/8th to the
13th/19th Centuries. London.

Tannery, P. 1893–1895. Diophanti Alexandrini opera omnia cum Graecis
commentariis. 2 vols. Leipzig.

Ver Eecke, P. 1926. Diophante d’Alexandrie. Les six livres Arithmétiques et
le Livre des nombres polygones. Bruges. Repr. Paris, 1959.

Winter, J. G. 1936. Papyri in the University of Michigan Collection: Miscella
neous Papyri. Michigan Papyri 3. Ann Arbor. 


	Rev 03 Sidoli on Christianidis/Oaks
	1.~ Use of medieval scholarship
	2.~ Close reading and translation
	3.~ Premodern algebra
	4.~ Outline
	Part 1. Introduction [1–271]
	Diophantus and his work [3–25]
	Numbers, problem solving, and algebra [26–79]
	History [80–230]
	Structure and language of the Arithmetica [231–266]
	Didactic aspect of the Arithmetica [267–271]

	Part 2. Translation [273–506]
	Part 3. Commentary [507–778]
	Part 4. Appendices [779–840]
	Appendix 1 [781–783]
	Appendix 2 [784–798]
	Appendix 3 [799–811]
	Appendix 4 [812–840]

	Bibliography and Index [841–876]

	5.~ Conclusion
	Bibliography


