Abstracts
Abstract
In this paper we study the selection of the number of primitive shocks in exact and approximate factor models in the presence of structural instability. The empirical analysis shows that the estimated number of factors varies substantially across several selection methods and over the last 30 years in standard large macroeconomic and financial panels. Using Monte Carlo simulations, we suggest that the structural instability, expressed as time-varying factor loadings, can alter the estimation of the number of factors and therefore provides an explanation for the empirical findings.
Download the article in PDF to read it.
Download
Appendices
Acknowledgements
We thank an anonymous referee and the Editor Marie-Claude Beaulieu for useful discussions and comments. The second author acknowledges financial support from the Fonds de recherche sur la société et la culture (Québec)
Bibliography
- Ahn, S.C. and A.R. Horenstein (2013). “Eigenvalue Ratio Test for the Number of Factors’’. Econometrica, 81(3): 1203-1227.
- Alessi, L., Barigozzi M., and M. Capasso (2010). “Improved Penalization for Determining the Number of Factors in Approximate Factor Models.’’ Statistics and Probability Letters, 80: 1806-1813.
- Amengual, D., and M. W. Watson (2007). “Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel.’’ Journal of Business and Economic Statistics, 25: 91-96.
- Bai, J., and S. Ng (2002). “Determining the Number of Factors in Approximate Factor Models.’’ Econometrica, 70: 191-221.
- Bai, J., and S. Ng (2007). “Determining the Number of Primitive Shocks in Factor Models.’’ Journal of Business and Economic Statistics, 25(1): 52-60.
- Bai, J., and S. Ng. (2013). “Principal Components Estimation and Identification of the Factors.’’ Journal of Econometrics, 176(1): 18-29.
- Barhoumi, K., O. Darné, and L. Ferrara (2013). “Testing the Number of Factors: An Assessment for a Forecasting Purpose.’’ Oxford Bulletin of Economics and Statistics, 75: 64-79.
- Bates, B. J., M. Plagborg-Moller, J. H. Stock, and M. W. Watson (2013). “Consistent Factor Estimation in Dynamic Factor Models with Structural Instability.’’ Journal of Econometrics, 177(2): 289-304.
- Bernanke, B., J. Boivin, and P. Eliasz (2005). “Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach.’’ Quarterly Journal of Economics, 120: 387-422.
- Boivin, J., and S. Ng (2005). “Understanding and Comparing Factor Based Macroeconomic Forecasts.’’ International Journal of Central Banking, 1(2): 117-152.
- Boivin, J., and S. Ng (2006). “Are More Data Always Better for Factor Analysis.’’ Journal of Econometrics, 132: 169-194.
- Boivin, J., M. Giannoni, and D. Stevanovic (2013). “Dynamic Effects of Credit Shocks in a Data-Rich Environment.’’ CIRANO Working Paper 2013s-11.
- Breitung, J., and S. Eickmeier (2011). “Testing for structural breaks in dynamic factor models.’’ Journal of Econometrics, 163(1): 71-84.
- Chamberlain, G., and M. Rothschild (1983). “Arbitrage, factor structure, and mean-variance analysis on large asset markets.’’ Econometrica, 51: 1281-304.
- Chen, L., J. J. Dolado, and J. Gonzalo (2014). “Detecting big structural breaks in large factor models.’’ Journal of Econometrics, 180(1): 30-48.
- Chen, N.-F., R. Roll, and S. A. Ross (1986). ”Economic Forces and the Stock Market.’’ Journal of Business, 59: 383-403.
- Connor, G., and R. Korajczyk (1986). “Performance Measurement with the Arbitrage Pricing Theory: A New Framework for Analysis.’’ Journal of Financial Economics, 15(3): 373-394.
- Connor, G., and R. Korajczyk (1988). “Risk and Return in an Equilibrium APT: Application of a New Test Methodology.’’ Journal of Financial Economics, 21(2): 255-289.
- Connor, G., and R. A. Korajzcyk (1993). “A test for the number of factors in an approximate factor model.’’ Journal of Finance, 48: 1263-1291.
- Dufour, J.-M., and D. Stevanovic (2013). “Factor-Augmented VARMA Models with Macroeconomic Applications.’’ Journal of Business & Economic Statistics, 31(4): 491-506.
- Eickmeier, S., W. Lemke, and M. Marcellino (2014). “A Classical Time Varying FAVAR Model: Estimation, Forecasting, and Structural Analysis.’’ Journal of the Royal Statistical Society, Series A.
- Guo-Fitoussi, L., and O. Darné (2014). “A comparison of the finite Sample properties of tion rules of factor numbers in large datasets.’’ LEMNA– University of Nantes Working Paper.
- Hallin, M., and R. Liska (2007). “Determining the number of factors in the general dynamic factor model.’’ Journal of the American Statistical Association, 102: 603-617.
- Hansen, L.P., and S. F. Richard (1987). “The role of conditioning information in deducing testable restrictions implied by dynamic asset pricing models.’’ Econometrica, 55: 587-614.
- Jurado, K., S. Ludvigson, and S. Ng (2013). “Measuring Uncertainty.’’ Forthcoming in American Economic Review.
- Korobilis, D. (2013). “Assessing the transmission of monetary policy using time-varying parameter dynamic factor models.’’ Oxford Bulletin of Economics and Statistics, 75 (2).
- Ludvigson, S., and S. Ng (2007). “The Empirical Risk-Return Relation: A Factor Analysis Approach.’’ Journal of Financial Economics, 83: 171-222.
- Ludvigson, S., and S. Ng (2009). “Macro Factors in Bond Risk Premia.’’ Review of Financial Studies, 22 (12): 5027-5067.
- Ludvigson, S., and S. Ng (2011). “A Factor Analysis of Bond Risk Premia.’’ in A. Ulah and D. Giles Ed., Handbook of Empirical Economics and Finance, pp. 313-372.
- Lutkepohl, H. (1984). “Linear transformations of vector ARMA processes.’’ Journal of Econometrics, 26: 283-293.
- Onatski, A. (2009). “Testing Hypotheses About the Number of Factors in Large Factor Models.’’ Econometrica, 77(5): 1447-1479.
- Onatski, A. (2010). “Determining the Number of Factors from Empirical Distribution of Eigenvalues.’’ The Review of Economics and Statistics, 92(4): 1004-1016.
- Onatski, A. (2012). “Asymptotics of the principal components estimator of large factor models with weakly influential factors.’’ Journal of Econometrics, 168: 244-258.
- Rao, C. R. (1955). “Estimation and Tests of Significance in Factor Analysis.’’ Psychometrika, 20 (2).
- Stock, J.H., and M.W. Watson (2002). “Forecasting Using Principal Components From a Large Number of Predictors.’’ Journal of the American Statistical Association, 22 (12): 5027-5067.
- Stock, J.H., and M.W. Watson (2005). “Implications of Dynamic Factor Models for VAR Analysis.’’ NBER WP 11467.