Abstracts
Résumé
Les applications de l’intelligence artificielle (IA) sont susceptibles de transformer le travail de professionnels(les) (soignants, juristes, enseignants, travailleurs sociaux, etc.). Cette étude de portée (scoping review) s’inscrit dans une collaboration entre les milieux syndicaux et de la recherche afin d’identifier les applications, usages et enjeux de l’IA qui sont documentés en lien avec le travail de professionnels(les). Les résultats montrent que l'IA est très présente dans des secteurs comme la santé, l’administration, le droit et l’enseignement. Ses finalités sont multiples : depuis l’archivage de données jusqu’à la prise de décision en passant par le traitement de textes, les interactions, la reconnaissance ou la simulation. Elle pourrait se développer dans de nombreux métiers et créer des enjeux transversaux majeurs, en particulier autour des compétences, des emplois, de l’éthique et du fonctionnement des organisations. Des enjeux plus spécifiques à chaque métier sont aussi identifiables. Ces résultats permettent de proposer une discussion pluridisciplinaire de ces enjeux en traitant de l’éthique dans la problématique du consentement à l’IA, de la dualité technologique de l’IA, du rôle d’un syndicat par rapport à l’IA et du défi informatique de l’explicabilité de l’IA.
Mots-clés :
- Applications IA,
- éthique,
- ressources humaines,
- syndicat,
- informatique,
- étude de portée
Abstract
Applications of artificial intelligence (AI) are likely to transform the work of professionals (i.e. caregivers, lawyers, teachers, social workers). This scoping review is part of a collaboration between union and research circles to identify the applications, uses and issues of AI that are documented in connection with the work of professionals. The results show that AI is very present in fields such as health, administration, law and education. Its purposes are multiple: from data archiving to decision-making, including word processing, interactions, recognition or simulation. AI could develop in many professions and create major cross-disciplinary issues, in particular around areas of competency, jobs, ethics and the functioning of organizations. Issues more specific to each profession are also identifiable. These results enable to propose a multidisciplinary discussion of these issues by dealing with ethics in the problems of consent to AI, the technological duality of AI, the role of a union in relation to AI and the computational challenge of AI explainability.
Download the article in PDF to read it.
Download
Appendices
Bibliographie
- Ågnes, J. S. (2022). Gaining and Training a Digital Colleague: Employee Responses to Robotization. The Journal of Applied Behavioral Science, 58(1), 29–64. https://doi.org/10.1177/00218863211043596
- Abord de Chatillon, E. et Desmarais C. (2012). Le nouveau management public est-il pathogène? Management international, 16 (3), 10-24. https://id.erudit.org/iderudit/1011413ar
- Agrawal, A., Gans, J., & Goldfarb A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence, Boston, Massachusetts: Harvard Business Review Press.
- Arksey, H. et O'Malley, L. (2005). Scoping studies: towards a methodological framework. International journal of social research methodology, 8 (1), 19-32. https://doi.org/10.1080/1364557032000119616
- Boatright, J.R. (2006). What’s Wrong—And What’s Right—With Stakeholder Management. Journal of Private Enterprise, 21(2), 106–130.
- Bobillier-Chaumon, M.-E. (2021). Digital Transformations in the Challenge of Activity and Work: Understanding and Supporting Technological Changes. Oxford : STE-Wiley
- Brivot, M. et Gendron, Y. (2011). Beyond panopticism: On the ramifications of surveillance in a contemporary professional setting. Accounting organizations and society, 36(3): 135-155. https://doi.org/10.1016/j.aos.2011.03.003
- Brynjolfsson, E., Mitchell, T. et Rock, D. (2018). What can machines learn, and what does it mean for occupations and the economy? AEA Papers and Proceedings, 108, 43-47.
- Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 1-12. DOI: 10.1177/2053951715622512
- Cardon, D., Cointet, J.P. et Mazières, A. (2018). La revanche des neurons. Réseaux, 5(211), 173-220. https://doi.org/10.3917/res.211.0173
- Carlini, N., Liu, C., Erlingsson, U., Kos, J. et Song, D. (2019). The secret sharer: Evaluating and testing unintended memorization in neural networks. 28th USENIX Security Symposium, 267-284.
- Clot, Y., & Leplat, J. (2005). La méthode clinique en ergonomie et en psychologie du travail. Le travail humain, 68(4), 289-316. https://doi.org/10.3917/th.684.0289
- Freeman, R. E. (1994). A Stakeholder Theory of the Modern Corporation. In Beauchamp, T.L. et Bowie N.E. (dir). Ethical theory and business, Upper Saddle River: Pearson: Prentice Hall, 66–76.Freeman, R. E., Harrison, J.S., Wicks A.C., Parmar B. & de Colle S. (2010,). Stakeholder Theory, The State of the Art. Cambridge: Cambridge University Press. https://doi.org/10.1080/19416520.2010.495581
- Freeman, R. E., Harrison, J.S., Wicks A.C., Parmar B. et de Colle S. (2010,). Stakeholder Theory, The State of the Art. Cambridge: Cambridge University Press. https://doi.org/10.1080/19416520.2010.495581
- Fréour, L., Pohl, S. et Battistelli A., (2021). How Digital Technologies Modify The Work Characteristics: A Preliminary Study. The Spanish Journal of Psychology, 24, e14. https://doi.org/10.1017/SJP.2021.12
- Freyssenet, M. (1992). Processus et formes sociales d'automatisation Le paradigme sociologique. Sociologie du travail, 34(4), 469-496. https://doi.org/10.3406/sotra.1992.2611
- Friedman, M. (1962) Capitalism and freedom. Chicago: University of Chicago Press.
- Friedman, M. (1970). The Social Responsibility of Business Is to Increase Its Profits, The New York Times Magazine.
- Gherardi, S. et Landri, P. (2014). “I Sign, Therefore I am” (Un)stable Traces of Professional Practices. Professions and Professionalism, 4(2), 1-11. https://doi.org/10.7577/pp.618
- Godelier, M. (1984). L’idéel et le materiel. Paris: Fayard.
- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F. et Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM computing surveys (CSUR), 51(5), 1–42. https://doi.org/10.1145/3236009
- Hasnas, J. (1998). The normative theories of business ethics: A guide for the perplexed. Business Ethics Quarterly, 8(1), 19-42. https://doi.org/10.2307/3857520
- Heath, J. et Norman W. (2004). Stakeholder Theory, Corporate Governance and Public Management: What can the History of State-Run Enterprises Teach us in the Post-Enron era? Journal of Business Ethics, 53, 247–265.
- Hoc, J.M. et Darses, F. (Eds.) (2004). Psychologie ergonomique : tendances actuelles. Paris : PUF, Collection Le Travail Humain. https://doi.org/10.4000/activites.1635
- Kellogg, K.C., Melissa A.V. et Christin A. (2020). Algorithms at work: the new contested terrain of control. Academy of Management Annals, 14(1), 366-410. https://doi.org/10.5465/annals.2018.0174
- Kohler, D. et Weisz J.D. (2016) Industrie 4.0: comment caractériser cette quatrième révolution industrielle et ses enjeux? Annales des Mines-Réalités industrielles, 4, 51-56. https://doi.org/10.3917/rindu1.164.0051
- Kuiper, M. (2018). Connective Routines: How Medical Professionals Work with Safety Checklists. Professions and Professionalism, 8(1), e2251. https://doi.org/10.7577/pp.2251
- Lacroux, A. et Martin-Lacroux C. (2021). L’Intelligence artificielle au service de la lutte contre les discriminations dans le recrutement: nouvelles promesses et nouveaux risques. Management Avenir, 2(122), 121-142.
- Leicht-Deobald, U., Busch, T., Schank, C., Weibel, A., Schafheitle, S., Wildhaber, I. et Kasper, G. (2019). The challenges of algorithm-based HR decision-making for personal integrity. Journal of Business Ethics, 160(2), 377-392. https://doi.org/10.1007/s10551-019-04204-w
- Leonardi, P. M., Nardi, B. A. et Kallinikos, J. (Eds.). (2012). Materiality and organizing: Social interaction in a technological world. Oxford University Press.
- Levy, K.e.c. (2022). Data Driven: Truckers, Technology, and the New Workplace Surveillance. Princeton: Princeton University Press.
- Lipton, Z.C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31-57.
- Malcolm, I. et Plowman, L. (2014). Knowledge, Technology and the Professional Learning of Localisers. Professions and Professionalism, 4(1), 1-15.
- Martin, D. (2013). The Contained-Rivalry Requirement and a ‘Triple Feature’ Program for Business Ethics. Journal of Business Ethics, 115(1), 167-182. https://doi.org/10.1007/s10551-012-1369-4
- Meijerink, J. et Bondarouk, T. (2023). The duality of algorithmic management: Toward a research agenda on HRM algorithms, autonomy and value creation. Human resource management review, 33(1), 100876.
- Mintzberg, H. (1989). Le management : voyage au centre des organisations. Paris: Éditions d'Organisation.
- Mira, J. M. (2008). Symbols versus connections: 50 years of artificial intelligence. Neurocomputing, 71(4-6), 671-680.
- Moriarty, J. (2016). Business Ethics. In Zalta E.N. (Ed.) The Stanford Encyclopedia of Philosophy. Stanford: Metaphysics Research Lab, Stanford University.
- Murphy, K.P. (2021). Probabilistic Machine Learning: An introduction. Boston: MIT Press.
- Musk, E. (2014). I hope artificial intelligence is nice to us. New Perspectives Quarterly, 31(1), 51-55. https://doi.org/10.1111/npqu.11427
- Narayanan, A. (2018). Translation tutorial: 21 fairness definitions and their politics. Conference Fairness Accountability Transparency, New York.
- Office des professions du Québec (2021). Code des professions, tiré de http://legisquebec.gouv.qc.ca/fr/document/lc/c-26
- Olsaretti, S. (2004). Liberty, desert and the market: A philosophical study, Cambridge: Cambridge University Press.
- Orlikowski W.J. et Scott S.V. (2016). Digital work: a research agenda. In Czarniawska, B. (Ed), A research agenda for management and organization studies, Cambridge: Edward Elgar Publishing, p. 88-95.
- Orlikowski, W.J. (1992). The duality of technology: Rethinking the concept of technology in organizations. Organization science, 3(3), 398-427. https://doi.org/10.1287/orsc.3.3.398
- Orlikowski, W.J. (2010). The sociomateriality of organisational life: considering technology in management research. Cambridge Journal of Economics, 34(1), 125-141. https://doi.org/10.1093/cje/bep058
- Pasquale, F. (2016) The Black Box Society, The Secret Algorithms That Control Money and Information. Harvard: Harvard University Press.
- Pereira, V., Hadjielias, E., Christofi, M. et Vrontis, D. (2021). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective. Human Resource Management Review, 33, 100857. https://doi.org/10.1016/j.hrmr.2021.100857
- Pfadenhauer, M. et Kirschner, H. (2017). From Dyad to Triad: Mediatization and Emerging Risks for Professional Autonomy. Professions and Professionalism, 7(1), e1646. https://doi.org/10.7577/pp.1646
- Pichault, F. et Nizet J. (2000). Les pratiques de gestion des ressources humaines. Paris: Seuil.
- Rabardel, P. (2005). Instrument, activité et développement du pouvoir d’agir. In Lorino P. et Teulier R. (eds). Entre connaissance et organisation: l’activité collective. Paris : La découverte, p. 251-265. http://www.cairn.info/entre-connaissance-et-organisation-l-activite-coll---page-251.htm
- Rissanen, O., Pitkänen, P., Juvonen, A., Räihä, P., Kuhn, G. et Hakkarainen, K. (2017). How Has the Emergence of Digital Culture Affected Professional Magic? Professions and Professionalism, 7(3), e1957. https://doi.org/10.7577/pp.1957
- Roll, M. et Ifenthaler D. (2021). Learning Factories 4.0 in technical vocational schools: can they foster competence development? Empirical Research in Vocational Education and Training, 13(1), 1-23. https://doi.org/10.1186/s40461-021-00124-0
- Schaeffer, E. (2017). Industry X. 0: Realizing digital value in industrial sectors. London: Kogan Page Publishers.
- Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017). Membership inference attacks against machine learning models. IEEE Symposium on Security and Privacy (SP), 3-18. https://doi.org/10.1109/SP.2017.41
- Simon, H.A. (1959). Theories of Decision Making in Economics and Behavioral Science. The American Economic Review, 49(3), 223-283.
- Stout, L. (2012). The shareholder value myth: How putting shareholders first harms investors, corporations, and the public. San Francisco: Berrett-Koehler Publishers.
- Tambe, P., Cappelli P. et Yakubovich, V (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61 (4), 15-42. https://doi.org/10.1177/000812561986791
- Trottier, M. et Comeau-Vallée, M. Intelligence artificielle et travail : les enjeux organisationnels et managériaux. 87e Congrès de l’ACFAS, Ottawa, Canada
- Werhane, P.H. et Radin T.J. (2004). Employment at Will and Due Process. In Beauchamp, T.L. et Bowie N.E. (Eds), Ethical theory and business. 7e éd, Upper Saddle River: Pearson: Prentice Hall.
- Woodward J. (1965). Industrial Organization: Theory and Practice, Oxford : Oxford University Press.