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Bacillus thuringiensis is a biological control agent for Choristoneura fumiferana, exerting its lethal effect primarily through the production of crystal 
proteins. There is concern about the impact of Cry toxins on non-target species, especially in terms of sublethal effects. By understanding the transcriptional 
response of C. fumiferana larvae to a sublethal dose of Cry1Ab toxin, we can proceed to assess whether genes showing altered transcriptional profiles 
can be used as universal Cry toxin stress markers for non-target insects. To this end, a suppression subtraction hybridization library was created and 
differential mRNA expression of selected clones was measured using a quantitative polymerase chain reaction (Q-PCR) technique. 
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Spruce budworm (Choristoneura fumiferana) larvae 
are destructive defoliators of North American forests 
where epidemic episodes result in major damage to 
spruce and balsam fir trees (1, 2). These episodes 
have been controlled using formulations containing 
the entomopathogenic bacterium Bacillus thuringiensis 
(Bt) that contains crystal proteins (Cry) as the active 
toxic agent. Bt has been developed commercially for 
the control of various agronomical insect pests (3, 4) 
and represents an important alternative to chemical 
insecticides (5).

Although Cry toxins have a relatively narrow host 
range, their effect on non-target organisms remains a 
controversial environmental issue (6). Sublethal effects 
on non-target insects are not readily apparent but can 
be assessed at a molecular level. By understanding 
the molecular response of the larvae to sublethal 
doses of a Cry toxin, we can then proceed to assess 
whether genes showing altered transcriptional profiles 
can be used as universal Cry toxin stress markers for 
non-target insects. The present study describes the 
construction and partial characterization (sequencing 
and mRNA quantification) of a suppression subtraction 
hybridization library between a Cry1Ab toxin exposed 
larval population of C. fumiferana and a control 
population not exposed to the toxin. 

C. fumiferana larvae were divided into two populations: 
a Cry1Ab protoxin fed population (35 ng of Cry1Ab 

protoxin) and a control population. Midguts from diet 
fed instar 4 (L4) larvae were removed by dissection 24 
h after the end of the feeding period and immediately 
stored at -80oC. Treatment was followed by mRNA 
extraction in order to create a subtracted library using 
both larval populations (control and toxin Cry1Ab 
treated). Gene expression was evaluated by Q-PCR 
analysis of 17 selected unique genes. All Q-PCRs were 
done in triplicate for two different biological replicates. 

The transformed library was initially characterized by 
sequencing 1091 clones. Among these clones, 623 
possessed unique sequences with the remainder 
representing duplicate or contiguous sequences. 
BLASTX analyses were performed and 171 clones were 
found to match to a specific function (e-value less than 
e-15). Those sequences ascribed a putative molecular 
function using the Gene Ontology Consortium software 
(7) and were classified in different categories. The 
majority of the unique sequences (54%) had a molecular 
function related to catalytic activity. The two other major 
functions represented were proteins involved in binding 
(15%) and structural (15%) functions. A small amount 
(3%) had a role in the stress response of the insects. 

All gene expression experiments (Q-PCR) were 
normalized to a housekeeping gene, the acidic calcium-
independent phospholipase A2 (PLPA2). After Q-PCR 
analysis, 17 clones were classified in three different 
groups according to the type of expression observed 
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after toxin exposure. Nine clones were considered 
overexpressed (ratio > 1.5), five clones showed stable 
levels of mRNA and three clones were transcriptionally 
repressed compared to the control when exposed 
to the toxin (Fig. 1). Two serine protease inhibitors 
(serpins) showed an overexpression profile in both 
biological replicates. Four other clones showed an 
overexpression profile after toxin exposure: an 
antifreeze protein, a cytochrome P450, an esterase and 
a protein involved in DNA repair. Three clones having 
homology with a growth factor, an initiation factor and 
a gene of unknown function also showed an enhanced 
expression profile in one replicate, but their expression 
levels remained unchanged in the other. This result 
was presumably due to the fact that only a single time 
point was examined in both replicates. In other words, 
the second replicate may have been sampled when 
the genes were either at the start or at the finish of 
their altered transcriptional profile. Five clones related 
to binding activity showed a stable expression profile 
(ratio between 0.5 and 1.5): an aminopeptidase, a chitin 
receptor, a hydroxydehydrogenase, an ATPase and an 
ATP binding cassette (ABC). Clones having homology 
with a lipase, a metalloprotease precursor and a heat 
shock protein were all repressed by the toxin treatment 
(ratio < 0.5). 

In this study, it was shown that the response elicited by 
sublethal Cry1Ab toxin ingestion seems to be related 
primarily to alterations in metabolic activities in the 

insect. A large number of enzyme-related genes were 
either enhanced or repressed while specific Cry toxin 
receptor genes such as aminopeptidase genes did 
not seem to have an altered transcriptional profile. 
Extending the analysis of these expression profiles 
among other toxin-exposed insects is needed to assess 
whether this stress response to Cry toxin intoxication is 
universal. 
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FIG. 1. Levels of mRNA expression by Q-PCR. BR1 and BR2 represent two independent biological replicates of the feeding experiments. 
Error bars represent standard error. All data were normalized to PLPA2 and expressed as a ratio (toxin fed/control).


