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Siri Fails the Turing Test : Com-
putation, Biosemiosis, and Arti-
ficial Life

Victoria N. Alexander
Dactyl Foundation

Introduction

The ubiquity of technologies using artificial intelligence (AI – Google 
learning algorithms, Apple smart phones and weaponized robots  – 
should give us pause. What is intelligence? What might be the difference, 
if any, between intelligence in machines and organisms? Both can obtain 
goals, set either by evolution or design. Machines can be programmed 
to perform computations, seek objects, read signs, and even preserve 
themselves. But do organisms and machines use different methods 
for learning, remembering and interpreting in order to perform these 
intelligent actions? 

Alan Turing is celebrated for designing the first universal computers 
and decrypting the German Enigma code during World War II. He is 
also known for the hubris of believing that AI could eventually develop 
chat bots that could pass for humans in limited exchanges, otherwise 
known as the Turing Test. Few are aware that Turing was a pioneer in 
the field of Artificial Life, working out equations to describe the process 
underlying the formation of dappled animal fur patterns, root growth, 
and embryonic differentiation. Turing intended to apply this research 
to the design of a self-learning network computer. He died of cyanide 
poisoning after writing his second preliminary paper on the subject. 
These long-neglected papers reveal how organisms construct themselves 
as universal Turing machines. His next step would have been to under-
stand how organisms learned by the same methods.

I approach these questions through the lenses of biosemiotics, 
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emergence theory and second-order cybernetics, newly developing fields 
indebted to Turing. Biosemioticians claim sign-use emerged with the 
first life forms, which are able to respond to gradients and transform 
them in ways that may not lead directly to self-preservation, but which 
lead to other gradients, and perhaps other gradients, which ultimately 
contribute to self-preservation. Thus even for the most primitive life 
forms, gradients can function as signs of what is needed. Biological 
computation, the rule-bound transformation of matter and energy, 
uses signs and runs semiotic habits that transform gradients, while 
machine computation uses codes and runs algorithms that transform 
1s and 0s. Both signs and codes are gradients/differences that stand 
for certain objectives or functions (Alexander 2013). But signs are both 
more flexible and more robust than codes. Additionally, biological 
computation is structured by the self-organizing laws of physics and 
by external selection, whereas all artificial computation (with rare ex-
perimental exceptions) depends entirely upon external selection for its 
organizational structure. And finally, whereas computer algorithms are 
normally activated by external command, each step in a semiotic habit 
helps reset the cycle so the habit can reactivate automatically.

That is my thesis stuffed into a carry-on. Now my task will be to 
unpack it. 

Turing’s death at forty-one was ruled a suicide, but he may have ac-
cidentally produced cyanide gas in his small, untidy en suite lab, which 
he called the “nightmare room”. Turing had lost security clearance as the 
UK entered the cold war, and paranoid bureaucracies began to enforce 
mechanized procedures for managing human affairs. The authorities 
(ironically so-called) jumped to the conclusion that because Turing was 
gay and he had got caught, the supposed shame had depressed him. His 
death is doubly tragic when we realize that Turing was on the brink of 
a great discovery about the fluid nature of human intelligence. 

Had Turing lived perhaps our understanding of human learning 
would not have become so distorted by inadequate machine computing 
metaphors, with the field of neuroscience liberally borrowing language 
from AI. Perhaps public education would not be approached as if children 
can be programmed to know. Although Turing had initially helped to 
promote such misconceptions, his thinking had evolved. This is about 
a man who was not just a computer. 

What is Computation?
Before machine computers, there were “human computers” who 

performed logical transformations using memorized set procedures : 
multiply A times B, write the result in line C. A multiplication table is 
essentially a computer program : connect vertical column 4 to horizontal 
row 6 and get 24. Turing called computer programs “instruction tables”, 
and the first computers were the physical embodiment of a look-up 



     233 Siri Fails the Turing Test : Computation, Biosemiosis, and Artificial Life

table, repurposed telephone switchboard equipment with plugs in rows 
and columns that could be connected by cables in different ways to do 
different procedures.

Turing’s work in decryption follows similar computational logic. 
Every letter represents a different letter according to a rule, such as 
“move two places to the left in the alphabet”; accordingly, A = C, B = 
D…. Z = B. The Enigma code used much more complicated multi-step 
transformation rules and the outcome of one step was fed-back into the 
operation to get the next step. To solve this, Turing devised a system 
of plugs and interconnecting gears that turned each other according 
to set rules.

Thus we can say that mechanical computer memory is physically 
embodied, or “programmed”, into its gears or look-up table structure. 
In digital computers the data is encoded in any kind of difference, e.g., 
1s and 0s. Switches or gates, replaced cables and directed how encoded 
differences are transformed.

Task-specific mechanical computers existed long before Turing’s uni-
versal machine. Made between 205-100 BC, the Antikythera Mechanism 
had multiple interacting gears representing the movement of the stars 
and solar system. The ancient Aztec calendar is a computational program 
in abstract form (look-up table) rather than physical form (gears). All 
programs describe the rule-bound transformations of matter/energy. 
We can say, therefore, that the equations of physicists are programs and 
nature does computation. Turing was interested in the fact that, while 
a machine computer requires a person to record the instruction tables, 
a human computer can learn to do procedures through experience. 

Learning Networks 
When Turing started working on a self-learning network computer, 

he assumed humans make guesses when they do not know a procedure 
for solving a problem. In 1948 in “Intelligent Machinery”, he claims, 
“training a human child depends largely on a system of rewards and 
punishments” for good and bad guesses respectively (Copeland 2004 : 
425). Turing designed a chess-playing program with optional moves that 
could be tried at random. If a move ultimately led to failure, it would 
not be reinforced. Turing’s neural network was designed to start out 
unorganized and become organized with appropriate “interference”, 
mimicking eduction.

Similar kinds of connectionist approaches are used today in most self-
learning algorithms. Depending on the kind of data that flows through 
them, connections are strengthened or weakened, affecting how nodes 
are switched on or off. Connection gates become biased with use. In this 
way, the “instruction table” is embodied in the connections and nodes 
as they are altered by reward/punishment feedback. 
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Feedback can be administered by a programmer, who adjusts the 
biases so that the network develops the desired output (taking the op-
ponent’s king), or the biases can be adjusted by sub-algorithms that 
filter at the nodes, or the feedback can come from crowd sourcing. 
Internet users train algorithms all the time. Reward and punishment 
eliminates the wrong algorithm and propagates the right one, according 
to a desired output. Although some AI developers call this approach 
“self-organizing”, this is an incorrect use of the term. As Turing noted, 
it still requires “interference” from the outside. 

The newest phase of AI, which arrived with the 21st century, boasts 
of “unsupervised” learning. A visual recognition network is exposed to 
millions of random images. Even though no images are labeled – the 
desired output is not defined – the network eventually detects recurring 
patterns. It creates a generalized representation of commons patterns, 
some of which may belong, for example, to cat faces. (If the fruit fly is 
the object of contemplation for geneticists, cats are it for programmers, 
whose datasource is the Internet). Programmers do not tell the network 
what to find; it just detects common patterns and outputs a general-
ized picture of the pattern. If the programmers recognize the output 
as a cat face, that network can be used to find cat faces, even though 
the programmer does not know what criteria were used to develop the 
generalization. The pathways and connections will have acquired biases 
in unknown ways at various levels that may be hundreds of levels deep 
(Le et al. 2013). 

 These new unsupervised “neural” networks are not so dissimilar to 
Turing’s 1948 notion of a self-learning network. The main difference is 
the point at which the programmer interferes, during the training pro-
cess to target a pre-specified pattern or after the network as detected a 
pattern that is of interest to the programmer. The unit of selection here 
is the entire network, not individual connections within the network. 
The trained network has become an “instruction table” for identifying 
the patterns it has detected.

Unsupervised learning is how most non-human animals learn. They 
are not taught (not intentionally rewarded and punished). Instead, they 
imitate what they detect. It’s the monkey see, monkey do approach. 
If they see the correct behavior frequently, they will end up doing the 
correct behavior.

Human Memory Storage
Humans can learn by this “connectionist” process. Rote learning is 

like being programed. Repeating the right procedure over and over until 
it becomes a habit actually changes neuronal connections. The learned 
behavior can be recalled automatically, without thinking, as if it were 
machine intelligence. Neurons that fire together wire together, as Donald 
Hebb so famously noted. Learning by rote, strengthening connections 
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over time, is statistical in nature. What happens the most gets selected. 
Repetition is one way humans learn, but not the only.

Before machine computers, before written language, people had 
another kind of program for memory storage, namely poetic narrative. 
An ancient astronomer without a practical way to record the movement 
of the stars and planets in a look-up table or a physical model might put 
the information into an oral metaphorical narrative with superhumans 
symbolizing the calendar. 

A paragraph of a poem is a “stanza”, “room” in Italian. Ancient poets 
associated each line in a stanza with the random objects in a room of a 
great palace. To recall a long poem, they imagined themselves walking 
from room to room, looking at the objects. Similarly, tone, rhyme and 
rhythm are used as mnemonic devices. Synesthetes can remember long 
arbitrary lists by associating numbers or words with colors, textures or 
shapes. One can recall something better, in the right order, if it is associ-
ated with something arbitrarily similar or arbitrarily nearby. This way 
of learning doesn’t follow the logic that Turing initially thought would 
be important for imitating human learning. 

According to American semiotician C. S. Peirce, natural symbolic 
language emerged from icons (A is a sign of B by virtue of similarity to 
B) and indices (C is a sign of D by virtue of contiguity with D) – or meta-
phor and metonymy. In biolgoical systems, cell receptors have a similar 
shape to molecules with which they are able to interact. Chemicals that 
are by-products of any process are contiguous with that process, that 
is, they are usually found in the vicinity of that process, as smoke is 
an index of fire. Things, like molecules, that are associated with other 
things, can form a chain of reactions, and if this chain of reactions 
is autocatalytic, recreating the conditions that allow it to continue, it 
creates a habit cycle. If this habit contributes to the survival or func-
tioning of the organism in which it exists, then we can say that it serves 
a purpose for the organism. Each icon or index, the individual links in 
this reaction chain, become an arbitrary symbol of the habit’s function.

Biosemiotics
Whereas, codes/symbols are decrypted in a strict one-to-one man-

ner following a predetermined arbitrary convention, an icon and index 
might have a different rule attached to each use, depending on context. 
In other words an icon might be similar to something else and an index 
might be associated with more than one outcome. Let’s try to imagine 
what is going on inside a neuron. This Rube Goldberg-inspired machine 
(Figure 1 below) for loading a toothbrush can be compared to a semiotic 
habit involving transformations of signs that control neuron activity. 
If the pin is pulled A, the ball pops B, and rolls down a channel C, etc. 
Figure 2 shows a Rube-Goldberg-like semiotic habit of a neuron involving 
a dopamine pathway. (We also note that each neuron has multiple such 
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habits and is also a node in semiotic habits among several neurons and 
groups of neurons which further constrain firing patterns. It’s complex.) 
I use a Rube Goldberg machine because it illustrates how the process 
of evolution has repurposed old tools and cobbled steps together. Each 
step in these processes is determined by the laws of physics, but differ-
ent materials/devices might have been used at each step; some might 
have been skipped over (see Faria 2008). Each step is only arbitrarily 
related to the outcome, that is, each step has been selectively retained 
in this machine only as a means, any means, to an end, which is the 
continuation of the cycle. 

Fig. 1 Rube Goldberg-Inspired Machine as a Semiotic Pathway.

Semiotic habits are more flexible than algorithms that use codes. 
For instance, the bird in Figure 1 could be replaced by something simi-
lar, like a frog. Anything that might jump or fly when startled could 
work. Organisms don’t try out new signs at random like Turing’s self-
learning computer program for chess. Biosemiotic guesses are more 
like hypotheses based on experience. A new sign in this habit must be 
similar/contiguous to the old one. If the substitution fits, the semiotic 
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habit might continue or adapt. In the neuron, similar enzymes might 
be used at different times to make the signal pathway work in variety 
of circumstances or to make it follow a different route. 

Fig. 2 - Neural dopamine pathway as a Rube Goldberg-like semiotic pathway.

Also, semiotic habits (within and among cells/organs) reset them-
selves, so we must imagine a Rube Goldberg machine designed by M. C. 
Escher. Such machines are autocatalytic reactions whose by-products 
restart the machine. 

Artificial Life
To design a self-learning network computer, Turing felt needed to 

know how the brain’s connections and switches developed. In the 1950s, 
he started to work on what we now call Artificial Life, a field tangent to 
AI. In “The Chemical Basis of Morphogenesis” (1952) and the “A Diffusion 
Reaction Theory of Morphogenesis in Plants” (Turing & Wardlaw 1952), 
Turing explores how an organism develops, how it does computation, 
how it transforms materials into other materials by set procedures. 

Having studied C. H. Waddington’s Organisers and Genes (1940), 
Turing had learned that genes are not equivalent to instruction tables 
for development. Waddington noted that the physical constraints of 
liquid crystals in random motion allowed them to fall into a pattern; 
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thus no instructions would be needed to direct similar kinds of biologi-
cal organization. Turing had also studied D’arcy Wentworth Thompson’s 
On Growth and Form (1942). Thompson held that similarities between 
different species did not necessarily indicate common descent or com-
mon genes, but might merely indicate there are similar physical laws 
constraining development.

In the first paper, Turing offers simple equations describing chemical 
reaction-diffusion processes that can artificially create (without genes) 
animal skin-like patterns (Figure 3) and cause cell differentiation. 
Turning discovered that the physical structure of the gene does not 
specify the elaborate, complex structure of the organism. The genes 
mainly provide the templates for making the materials, in the right order 
and in the right amounts. But the genes do not contain the instructions 
for how to put the materials together (see Keller 2002 for a history of 
the understanding of gene action). The laws of physics act as the trans-
formation rules that help self-organize the gene-produced materials.

Fig. 3 - Computer-generated Turing Patterns.

As a computer programmer, Turing would have had great admira-
tion for Nature’s ingenuity and economy. She did not have to physically 
record the procedure for development in the DNA. Instead, Nature 
availed herself of programs that already exist in the world. We can say 
that zebra stripes and giraffe patterns already existed as patterns before 
life on Earth, before genes. Many forms in nature are the result of the 
constraints of physical forces, not the direct outcome of genetic control 
or gene selection. 

Self-Organization = No External Selection
As noted above, before beginning his work on morphogenesis, Turing 

had assumed organisms are programed by external interference, be it 
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from computer scientists, school teachers, or the process of natural 
selection. He discovered nature sometimes works without interference. 

Waddington and Thompson continued the work of pre-Darwin theo-
rists who sought to understand the inherent, universal laws biological 
form, not the externally-driven, particular effects of selection (whether 
Lamarckian or Darwinian). By the late 1940s and early 1950s, Darwin’s 
theory had almost completely eclipsed pre-Darwinian theories, which 
were then derided or unknown. To be interested preDarwinian theories 
in England in 1952 was tantamount to heresy. As an outsider to biology, 
Turing was probably less bothered by what the reigning conventions 
dictated. He was poised to bring about the Kuhnian paradigm shift that, 
after his death, did not begin for another thirty years.

The natural selection for reproductive fitness explains why organ-
isms are so well suited to their environments, but Darwinism is not a 
theory morphogenesis. Where does form come from?

Turing’s reaction-diffusion equations describe autocatalytic pro-
cesses that are initiated by local fluctuations that become amplified : 
initially one type of chemical reaction produces some by-product, but 
when this reaction runs out of materials, another chemical reaction 
takes over which uses the by-product; repeat. The result is a standing 
wave pattern. The second paper dealt with how these patterns, in turn, 
interact non-linearly to cause further differentiation. The salient point 
is that the unorganized chemical soup spontaneously forms patterns 
by amplifying small fluctuations in chemical concentrations. Nothing 
external is driving the changes. As chemicals diffuse across the cells, 
they leave behind chemical residues, which makes some cells different 
from others. These chemical differences, in turn, trigger genes within the 
cell to make different kinds of proteins. Turing proposed that reaction-
diffusion is the mechanism whereby an embryo starts out as a collection 
of perfectly identical cells and then automagically differentiates into 
specialized cells, heart cells, lungs cells, etc. In the 1950s, scientists 
offering such theories would either be ignored or come under serious 
fire from orthodox neoDarwinists who wanted to think that the natural 
selection of genes and the natural selection of genes alone was respon-
sible for shaping organisms — not physics.  

Self-Organization as Amplified Chance
How could Turing be open to self-organization, which is so unlike 

the programming he had so far conceived? In 1932, when Turing was 
twenty, he was thinking about his first love, Christopher Morcom, who 
had died two years earlier. Turing wrote “Nature of Spirit”, influenced by 
J. M. E. McTaggart, who, though an atheist, believed the human “spirit” 
preceded and survived the body. McTaggart was committed to the idea 
that everything, including matter, is fundamentally “spirit” (by which 
he meant, insofar as I can tell, something comparable perhaps to C. S. 
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Peirce’s notion of Firstness). In the essay, Turing reflects on the way 
LaPlace’s deterministic universe had been overthrown by the discovery 
of quantum indeterminacy. He goes on to speculate that if nothing in 
the universe is predetermined, perhaps

We have a will which is able to determine the actions of the atoms probably 
in a small portion of the brain, or possibly all over it. The rest of the body 
acts so as to amplify this. There is now the question which must be answered 
as to how the action of other atoms of the universe are regulated. Probably 
by the same law and simply by the remote effects of spirit [by which Turing 
seems to mean quantum indeterminacy, as the “new” monism to succeed 
McTaggart’s monism], but since they have no amplifying apparatus they 
seem to be regulated by pure chance (2-3, emphasis added). 

It may have been significant for his discovery of morphogenesis by self-
organization that Turing had once imagined organisms have an “appa-
ratus” that “amplifies” small fluctuations. Although he did not locate the 
supposed apparatus, he did find that fluctuations could be amplified to 
significant effect by physical laws. The idea fits well with McTaggart’s 
idealism in that the “apparatus” turns out to be the immaterial laws of 
physics. Although this may not be quite what the grieving young Turing 
had imagined for his friend’s immortal spirit, the self-organizing laws of 
reaction-diffusion processes are “programs” that exist abstractly prior 
to and survive the body. Scientific advances don’t always proceed logi-
cally. Sometimes an emotional need opens up the mind to new ideas. 

Emergent Brain Patterns
To recap, Turing had found the complete instructions for organizing 

cells are not in the genes, but are also encoded in the laws of physics. 
Is there a program for organizing the actions of neurons? 

This question has long been known as the “binding problem” in 
neuroscience (see Raffone & van Leeuwen 2001). Because we know that 
neurosurgeons probing around in grey matter may make the patient 
hallucinate the smell of bacon or the sound of an elevator bell, it is 
probably not too incorrect to say that raw data seems to be habituated 
as connectivity among neurons. Connections also appear to serve mul-
tiple purposes, habituating different data among the same neurons with 
different connections. But it is less well understood how sense data is 
bound or organized into coherent thoughts, later to be recalled or used 
in different contexts. 

In thorough reviews of the literature, Kelso et al. (1991), Uhlhaas 
et al. (2009) and De Assis (2015) report that many neuroscientists un-
derstand the mechanisms underlying working memory and attention 
in terms of emergent brain waves that synchronize distant neurons. 
Synchronization creates virtual neuronal assemblies, without creat-
ing permanent circuits (De Assis 2015; see also Freeman 2000; Postle 
2006). Generally, neuroscience literature (see Basar et al. 2001) has 
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come to associate beta waves with perception, attention, motor control, 
sensory gating, top-down control; alpha waves with attentional process 
and consciousness; theta waves in the hippocampus with memory and 
spatial navigation (see Zhang & Jacobs 2015), and gamma waves with 
perception, attention, memory, consciousness, synaptic plasticity, and 
motor control. It appears that waves may provide “the ’contexts’ for the 
’content’ carried by networks of principal cells” providing “the precise 
temporal structure necessary for ensembles of neurons to perform specif-
ic functions, including sensory binding and memory formation” (Buzsáki 
& Chrobak 1995). The systemic reorganization of neural activity, key 
to insight, is associated with gamma waves and the anterior superior 
temporal gyrus, which, significantly perhaps, is linked to language use, 
understanding of literary themes and metaphors, and getting jokes, 
which require making distant connections (Jung-Beeman et al. 2004).

In addition to acting as a binding mechanism, emergent wave pat-
terns may also define what data gets attention, that is, consciousness 
(see Thompson & Varela 2001), which in turn affects sensory processing. 
For years neuroscientists had referred to attention as a “spotlight” shin-
ing on the right file folder as needed, but now it is clear that attention 
is not neutral. It anticipates, fills in details, sharpens and augments 
data (Uhlhaas et al. 2009; Gilbert & Sigman 2007). 

All this contradicts 20th century notion that brainwaves are like 
the sound an engine makes and do not contribute to the operation of 
the engine. 

In this paper, then, I work under the assumption that individual 
neurons both produce the higher level waves and are controlled by them. 
Such reciprocity does not exist in current AI computation, which does 
not produce contextualizing emergent constraints. Even with the latest 
celebrated update (Levis-Kraus 2016), Google Translate is still bad with 
puns, jokes and poetry which depend on context. The application tries to 
deal with context by measuring the statistical probability that words will 
appear near each other based on past samples. The sentences : “Time 
flies like an arrow. Fruit flies like a banana” translated into traditional 
Chinese, produces, “時間就像一個箭頭。 果蠅像香蕉”, which omits the 
all-important first “flies” (飛) because in Chinese, the combination of 
“time” with “flies” is uncommon. The translation is equivalent to “Time 
is like an arrow. Drosophila like bananas”. Machines just don’t have a 
sense of humor. To design computers that can get jokes, one might need 
a more fluid medium for traveling gamma waves to emerge. (In the film 
Ex Machina, the robot’s brain is a gel.) Atomic switch networks seem 
promising; they have been used to create emergent patterns that imi-
tate simple natural systems (Stieg et al. 2014). Experimental chemical 
reaction-diffusion computers have been around for more than a decade 
(Adamatsky et al. 2005), but although they create emergent patterns, 
they do away more permanent connections. Our brains seem to use both.
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It’s no wonder AI falls short. The brain is the most complex object 
known to man. We are closer to understanding the most distant event 
in the universe, the Big Bang, than we are to understanding our own 
brains. Current methods for measuring brain activity, such as with 
EEG net caps, resembling Dr Frankenstein technology, give only a lim-
ited picture of electrical oscillations. Although models can be cobbled 
together from EEG, fMRI, PET, SQUIDs or MEG measurements, we still 
cannot see three-dimensional topological waves in real time. Even if we 
could look at three-dimensional picture, the emergent patterns would 
be difficult to see because neurons are not all connected side by side; 
the dendrite of one neuron may connect to an axon at a relatively long 
distance. Nevertheless, we may assume emergent behavior in the brain 
does occur (see Chialvo 2010). We see emergence in all living and many 
non-living systems : slime mold organization, video feedback, stock 
markets, shimmering bees and butterfly wing patterns, to name a few 
examples.

Algorithms, Instruction Tables, Habits, Epsilon-Machines
All self-organizing systems follow universal rules that can apply to 

any system of a certain complexity, regardless of its actual materials/
members. Thus, we can try to visualize emergent brain patterns by 
looking at a flock of starlings. Just as neuroscientists investigate the 
mechanisms whereby coordination of various neurons occurs, we can 
investigate the mechanisms whereby coordination of individual starlings 
occurs. 

Starling murmurations can fall into recognizable shapes : funnels, 
waves, folds, bowls – loosely speaking. Since emergent brain patterns 
also follow limited variations on themes, they might be reliably reacti-
vated when approximately the same groups of neurons are stimulated as 
when the memory was habituated. The different shapes and frequencies 
could trigger different memory structures (Raffone, & van Leeuwen 2001; 
Tsuda 2001). As the emergent brain waves roll and interact, they affect 
the local connections associated with information from the senses. We 
can see that the wave in a flock, as it contracts and diffuses, constrains 
the behavior of individual starlings, further reinforcing the continuation 
of the wave pattern.

So what might be going on at the level of the individual bird that 
leads to emergent patterns at the collective level? Let this instruction 
table (Figure 4) represent the imagined possible states of a single star-
ling; the arrows stand for transformation rules.  

Initially a group of birds flying together will behave fairly chaotically. 
When a flocking pattern emerges, we can guess that the individuals are 
beginning to cycle through their various possible routines in a more ef-
ficient manner than previously, without getting hung up on “if A then 
B, if B then A”, or crashing into other birds. Complexity scientist J. P. 



     243 Siri Fails the Turing Test : Computation, Biosemiosis, and Artificial Life

Crutchfield (1994) calls the simplest possible representation of the local 
level process of a self-organizing system an Epsilon-Machine. Although 
the bird does not take the same path every time, the Epsilon-Machine 
is relatively less noisy. 

Fig. 4 - Epsilon Machine for Possible State Changes of a Singles Starling in a 
Flock.

Fig. 5 - Epsilon Machine for Possible Overlapping Routines of Two Starlings 
in a Flock.

Let this instruction table (Figure 5) represent the possible states for 
two birds overlaid one upon the other. The birds have similar constraints 
so they tend to fall into similar routines. Once an efficient routine is 
discovered by one individual, it tends to pick up neighbors, when, by 
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chance, their cycles coincide. When they all begin to flow together, we 
have a wave of birds more or less following each other. The wave tends 
not to lose participants once its gained them. The birds in a flock do 
not follow each other like clockwork. Our flock behaves organically, 
not mechanically, not at all like a team of synchronized swimmers nor 
like a marching band. The individual birds here have to be flexible, if 
the next bird takes an unexpected option, ready to switch to a different 
routine almost instantly. Not only would each routine have several op-
tions within the routine, but a flock probably has number of routines 
from which to choose. The different routines might result in different 
emergent patterns. 

Let’s consider a much simpler diffusion wave at football stadium. 
Spectators stand up and raise their arms when their neighbors do, then 
sit back down. A messy wave travels over the crowd. Heartcells require 
flexibility and cannot act like a marching band. If one cell’s timing is 
off, the pattern has to be able to flow around the misfiring cell. If we 
watch just one man in the stadium, we would see that he jumps up 
and down at fairly regular intervals. Flocking is more complicated. If we 
could just focus on one bird in a flock and record its motions in space, 
it would be very difficult to recognize any kind of pattern. Because the 
bird’s instruction tables are flexible, its actions, taken out of context, 
end up creating non-repeating patterns. A neuroscientist looking at just 
one neuron won’t be able tell that it’s following any kind of algorithm. 

If we can’t figure it out, how do birds learn to flock? Before he started 
researching reaction-diffusion, Turing had imagined that a self-learning 
network would be organized by a selection process, by system of rewards 
and punishments. But I suspect such training would produce a march-
ing band, not an organically flowing flock. If we assume that any of the 
bird’s choices in the routine allow it to avoid crashing into other birds, 
what would be driving a selection process if all available choices are 
equally valid? When random interactions among individuals begin to 
flow, what is happening to define the pathways? This is not the kind of 
selection that determines connectionist algorithms. It’s self-organizing 
information flow. 

Selection for function is not necessary to create a starling’s instruc-
tion table because it is highly probable that randomly interacting birds 
will find the most efficient paths. Likewise Turing’s chemical reactions 
flow to the lowest possible energy state as they create higher level pat-
terns. If a bird has taken a path, its neighboring state configurations are 
timed to allow the flow to occur : one bird gets out of the way, another 
can get in, the two neighbors become coupled, and will continue to be 
coupled if nothing knocks them out. If another individual happens to 
be in a fortuitous state when the efficient flow passes, it will become 
coupled with the flow. 

Biosemiotics offers an explanation for organic flow : the holistic wave 
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patterns emerge when local fluctuations allow stochastic resonance, the 
similarity and contiguity of possible states, to drive the routine toward 
efficiency. Artist have long known that they, like birds, must allow their 
actions to flow.

Waddington had provided Turing with a model of flow in organic 
development. An epigenetic landscape (Figure 6) is a visual metaphor for 
the physical forces that guide development beyond the control of genes. 
The model illustrates how local state changes tend to flow down hill. 

Fig. 6 - C. H. Waddington’s epigenetic landscape, from The Strategy of 
Genes (1957). An earlier version of this model appeared on the frontispiece 

of Organisers and Genes (1940).

When a bird is ready to move in one of several directions, or when 
a neuron is primed to fire, it is in a state of instability, like a ball sitting 
atop a mountain saddle with various valley features down below. Any 
slight fluctuation in initial conditions might push it toward one pathway 
or another from this point of instability. It’s very hard to predict exactly 
which way it will go. These ideas became known as the “catastrophe 
theory” of early biosemiotician René Thom (see Favareau 2009 : 337-376) 
and later “chaos theory” (Crutchfield et al. 1986). Very small fluctua-
tions in initial conditions can lead to disproportionately large differences 
in outcomes : the changes are non-linear; trajectories fork. But while 
unpredictable state changes are going on at the local level, emergent 
waves travel over the collection of individual nodes constraining them. 
The Heraclitean never-quite-same wave pattern might amplify fluctua-
tions across an entire neuronal assembly.  

Natural selection can then favor one of these emergent patterns over 
another. Just as natural selection doesn’t “see” the genes per se only 
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their outcomes, natural selection probably doesn’t see the local state 
configurations either; it doesn’t need to since these are just flowing 
spontaneously. What it can select are the patterns that emerge from the 
local interactions (cf. Rocha 1998). While local self-organization flows 
downhill, natural selection is said to drive gene frequencies uphill, that 
is, to unlikely genetic configurations, to high fitness in a fitness land-
scape (think uncommonly long giraffe necks). Thus self-organization 
and natural selection work together to develop and keep flexible robust 
emergent forms that fit well in an environment. 

Likewise in the brain, the spontaneous actions of neurons may create 
emergent waves that constrain attention and thoughts which then may 
be selectively retained or not.

AI as Judge
This signal propagation theory of learning, using icons and indices 

not just symbols, helps explain how people are able to form and use fluid 
adaptable categories and deal with complex changing environments. Cur-
rent AI does not imitate the fluid interplay between self-organization and 
natural selection. Designers are more committed to strictly selectionist, 
aka connectionist, approaches. Although learning can be accomplished 
this way, it produces automatons, as does standardized curriculums 
and relentless testing, reward and punishment. 

AI self-learning algorithms regularize, make generalities and stereo-
type. If they seem to work well pretty often, that’s because stereotypes 
are often true, and they tend to be self-reinforcing. Learning algorithms 
can make predictions about groups as well as any actuarial table, but 
predicting with certainty individual human behavior is still impossible. 
Due to the non-linearities of the lower level activity, complex emergent 
phenomena cannot be captured by statistical descriptions, and this is 
precisely why AI has been disappointing. This is not to say that I think 
intelligence cannot be created in a lab or factory. Intelligence has emerged 
from inanimate matter before under certain conditions and there is no 
reason why it cannot emerge again under certain other conditions. But 
we cannot trust an algorithm to be more objective than a human semiotic 
habit. In 2015 Google’s algorithm for classifying images labeled black 
people gorillas (Dougherty 2015).

AI is the bureaucratic approach to decision-making on steroids. 
We recall here that Alan Turing was punished by the British criminal 
justice system because he was an “upper class” Brit; he was gay and he 
had a relationship with a younger “lower class” man. The courts found 
him guilty of gross indecency. He was forced to take hormones, a kind 
of chemical castration. 

Unfortunately, AI is today being used in U.S. court systems to pass 
sentences, exacerbating already existing stereotypes. Software is used to 
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predict the likelihood that a criminal will re-offend by categorizing him 
or her as a type. The result is, as you would expect, blacks get tougher 
sentences than whites with comparable data points (Angwin et al. 2016).

AI is going into other areas it should not go. According to Deputy 
Director for Digital Innovation at the CIA, Andrew Hallman, the agency 
now uses Deep Learning AI to better “anticipate the development of 
social unrest and societal instability…three to five days out” (Konkel 
2016). Sounds like the pre-crime unit is up and running.

I’m sorry to see human judgment being taken out of the equation in 
the criminal justice and national security systems. Computers are good 
at retrieving specific facts, but in some ways, they can be more prejudiced 
than the average person. Maybe we will eventually use reaction-diffusion 
computers to create more humanoid processors, but why would we? We 
already have lots humans coupled to computers to provide judgement. 
As many science fiction writers show, consciousness is not something 
the power elite want in a tool.

We should not pretend that the specific behavior of individuals is 
predictable. We can’t even predict the weather five days out and never 
will. At best, like a starling in a flock, we can learn to flow with and/or 
create an emergent pattern, but we can’t get ahead of it. 
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Abstract
Artificial Intelligence (AI) designers try to mimic human brain capabilities with 

“self-learning” neural networks trained by selection processes. Yet decades on, AI 
still fails the Turing Test. While computers use codes and develop algorithms apart 
from contexts, living cells use signs and develop semiotic habits within contexts. This 
difference, I argue, is partly due to the collective activities of biological neurons that 
produce traveling waves, which, in turn, further constrain neural activity. It appears 
wave patterns function as contexts shaping the content of the local connections. At 
the time of his death, Alan Turing was investigating the organizing role of emergent 
wave patterns on biological development. Had he lived to continue this work, he might 
have reoriented AI research, which instead has become merely a tool for stereotyping 
and regularizing, not thinking.

Keywords : Semiotics Habits; Emergence of Semiosis; Alan Turing; Biological 
Computation; Poiesis.

Résumé
Les concepteurs d’intelligence artificielle (IA) tentent d’imiter les aptitudes des 

cerveaux humains au moyen de réseaux neuronaux qui apprennent par eux-mêmes 
grâce à des processus de sélection. Mais même après des décennies d'efforts, l’IA n’en 
continue pas moins d’échouer le test de Turing. Alors  que des ordinateurs utilisent 
des codes et développent des algorithmes hors contexte, les cellules vivantes utilisent 
des signes et auto-organisent des habitudes sémiotiques de manière contextualisée. 
Je soutiens que cette différence s’explique, en partie, par les activités collectives des 
neurones biologiques qui produisent des ondes, lesquelles contraignent l’activité 
neuronale. Il appert que les motifs ondulatoires fonctionnent comme des contextes, 
et qu’ils informent le contenu des connexions locales. Au moment de sa mort, Alan 
Turing l’inventeur original de l’IA, s’intéressait au rôle organisateur des motifs ondu-
latoires sur le développement biologique. S’il avait vécu et poursuivi ses travaux, il 
aurait peut-être réorienté la recherche sur l’IA, laquelle est devenue un outil servant 
simplement la régularisation et la création de stéréotypes, et non un outil de pensée.

Mots-clés : Habitudes sémiotiques; émergence de la sémiose; Alan Turing; calcul 
biologique; poièsis.
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