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Likelihood and its use in Parameter Estimation 
and Model Comparison

Denis Cousineau 
Teresa A. Allan

University of Ottawa

KEy words: parameter estimation, modeling Likelihood, Likelihood ratio, 
r script 

Parameter estimation and model fitting underlie many statistical procedures.
Whether the objective is to examine central tendency or the slope of a regres-
sion line, an estimation method must be used. Likelihood is the basis for para-
meter estimation, for determining the best relative fit among several statistical
models, and for significance testing. in this review, the concept of Likelihood is
explained and applied computation examples are given. The examples provi-
ded serve to illustrate how likelihood is relevant, and related to, the most fre-
quently applied test statistics (student’s t-test, AnOVA). Additional examples
illustrate the computation of Likelihood(s) using common population model
assumptions (e.g., normality) and alternative assumptions for cases where data
are non-normal. To further describe the interconnectedness of Likelihood and
the Likelihood Ratio with modern test statistics, the relationship between
Likelihood, Least squares Modeling, and Bayesian inference are discussed.
Finally, the advantages and limitations of Likelihood methods are listed, alter-
natives to Likelihood are briefly reviewed, and R code to compute each of the
examples in the text is provided.

Mots-CLés : estimation de paramètres, modélisation, vraisemblance, rapport
de vraisemblance, programme r

L’estimation de paramètres et l’ajustement de modèles est au cœur de toutes pro-
cédures statistiques. Que l’objectif soit d’examiner la tendance centrale ou une
pente de régression, une méthode d’estimation est nécessaire. La fonction de vrai-
semblance est la pierre angulaire sur laquelle repose l’estimation de paramètres,
les tests d’hypothèses et la comparaison de modèles. Cet article présente le concept
de vraisemblance et les tests statistiques communément utilisés (tests t, AnOVA).
Certains exemples présentent le calcul de la fonction de vraisemblance lorsque le
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postulat de normalité est présent et lorsqu’il n’est pas adéquat. Les liens entre vrai-
semblance, rapport de vraisemblance, méthodes des moindres carrés et bayésienne
sont discutés. Finalement, les forces et les faiblesses des méthodes basées sur la
vraisemblance sont énumérées et des méthodes alternatives sont mentionnées. Des
instructions en R sont données pour tester les exemples du texte.

Palavres-chave: estimativa de parâmetros, modelização, verosimilhança, razão de
verossimilhança, o programa r

A estimativa de parâmetros e o ajustamento de modelos está no cerne de todos os
procedimentos estatísticos. se o objetivo é analisar a tendência central ou uma
inclinação de regressão, é necessário um método de estimativa. A função de veros-
similhança é a pedra angular sobre a qual assentam a estimativa de parâmetros,
os testes de hipóteses e a comparação de modelos. Este artigo introduz o conceito de
verosimilhança e os testes estatísticos vulgarmente utilizados (testes t, AnOVA).
Alguns exemplos mostram o cálculo da função de verossimilhança quando o pres-
suposto de normalidade está presente e sempre que não é adequado. Discutem-se
as ligações entre a verosimilhança, razão de verossimilhança, os métodos dos míni-
mos quadrados e o bayesianismo. Por fim, são enumeradas as forças e as fraque-
zas dos métodos baseados na verosimilhança e são mencionados os métodos alter-
nativos. As instruções em R são dadas para testar os exemplos do texto.
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comments on an earlier version of this text.
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Likelihood and its use in Parameter Estimation and Model Comparison 65

Likelihood and its use in Parameter Estimation 
and Model Comparison

Likelihood is a concept used throughout statistics, as are the related
statistical procedures: the Maximum Likelihood and the Likelihood ratio.
Likelihood is also used when computing many quantities, including the
akaike Information Criterion (aIC) and the Bayesian Information
Criterion (BIC). Understanding Likelihood is useful to the researcher for
both comprehension and application of many of the statistical procedures
frequently used in modern data analysis.

this article provides the reader with an introduction to Likelihood
and a description of how it is used in, and related to, student’s t-test and
the anova. Equations are given throughout the text; however, they are
not instrumental to understanding Likelihood at a higher level. thus,
interested readers are provided the mathematical foundations, and hur-
ried readers can skip ahead without compromising their general under-
standing of the theory underlying the equations. 

this article provides a definition of Likelihood and explains its rela-
tionship to probability. the relationship between Likelihood and para-
meter estimation is discussed, and examples are given where Likelihood is
used to statistically compare two competing hypotheses. the advantages
and limitations of the Likelihood methods are provided. Further, we com-
pare and contrast Likelihood with the Least squares Modeling technique
and Bayesian Inference. alternatives to the Likelihood method are also
described. Finally, the appendix contains r code for five examples:
Computing the log likelihood (1), testing the significance of a hypothe-
sized mean for both one (2) and two groups (3), performing a test of the
hypothesized mean on a single group assuming a non-normal distribu-
tion (4), and obtaining a best-fitting parameter estimate using Maximum
Likelihood Estimation (MLE) (5).

throughout the text, three terms are used: Likelihood, likelihood,
and log likelihood. the uppercase spelling refers to Likelihood as a con-
cept and a method. For equations where Likelihood is computed (denot-
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ed by ℒ), calculating either the likelihood or log likelihood yields an
equivalent outcome. the lowercase spelling refers to the distinct compu-
tation that results in a very small positive value (e.g., a likelihood value
of 6.44 × 10-18). Because very small positive values are less intuitive to
work with, the log of that value (-34.98) is commonly used instead. to
enable the novice reader to follow the examples with ease, these terms are
used operationally as outlined above to distinguish which formulae are
being used in each context.

the examples presented in this paper use a set of Intelligence Quo-
tient (IQ) measurements that were generated from a normal population
with a mean of 100 and standard deviation of 15 (Figure 1, left panel).
a small sample of 10 IQ scores from this population was randomly
selected (Figure 1, right panel). a much smaller sample than is typical
for be hav ioural research is used here to keep the examples mathemati-
cally simple.

DEnis COUsinEAU, TEREsA A. ALLAn66

Figure 1. Example of a population distribution (left panel) and the 
frequency plot of a small sample taken from that population
(right panel). The sample contains 10 scores (see individual 
data in the text); they are grouped into bins of 10 points

Definition of Likelihood

the concept of Likelihood slowly emerged from the work of precur-
sors such as Bernoulli and Gauss. It was first presented as a fully mas-
tered concept in Fisher’s statistical Methods for research workers
(1925). Fisher’s anova was created through the simplification of equa-
tions based on the Likelihood Method. Using Likelihood ratios, ney-
man and Pearson (1933) developed the concept of statistical power and
demonstrated that t-tests and anova tests are powerful test statistics
when all of the assumptions are met.
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technically speaking, Likelihood is the probability that a population
with a specified set of parameters was examined, given a sample of
observations1. differing from probabilities, which may be predictive (e.g.,
given a population a, what are the odds that a sample containing X and
y will occur?), Likelihood specifically refers to that which has already
occurred (i.e., given that observations X and y have occurred, how like-
ly is it that this sample was taken from population a?). thus, by defini-
tion, Likelihood can only be computed when a sample of observations
from a population has already been collected. 

Likelihood is mathematically noted with the uppercase script letter ℒ,
and is generally written as follows: ℒ(a population ∣ x1, x2, ⋯ , xn) (1)

where the x1, …, xn are a set of n observations, sometimes shortened to
X and the vertical bar is read as «given the following observations». the
population considered must have specific (and specified) characteristics.
Using Likelihood, it is possible to calculate the likelihood of being in
London, England, given that three successive days of rain have been
observed from the vantage point of the laboratory window (highly like-
ly). Later, it will be possible to compare this likelihood to the likelihood
of being in tamanrasset in the south of algeria, given the same data (far
less likely).

If  a researcher is studying rainy days in a given city, the population is
a description of how days are distributed between «rainy» and «non-
rainy» (the binary measure in this situation). thus, the term population is
used to identify and describe quantifiable relevant characteristics – para-
meters – that describe the context in which the observations were sam-
pled. while it is fairly simple in this example to calculate the proportion
of days that are rainy vs. non-rainy based on an operational definition,
the exact attributes of most populations are typically far more complex,
and in many cases are entirely unknown. to quantify and describe un -
known population parameters, hypotheses (models) are generated.
researchers may formulate several models for any definable construct.
thus, there is a need to determine which model, among many, best rep-
resents the data. restated: Which of these hypothetical models has the best
relative fit, or is the most likely to be a true representation of the popula-
tion, given that this specific set of data were observed? 

Likelihood and its use in Parameter Estimation and Model Comparison 67
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another way to conceptualize Likelihood is to think of it as a prob-
ability measure bounded between zero and one. a value of zero indicates
that a certain population parameter is extremely unlikely (to the point
that it is impossible) and a value of one indicates that the specified para-
meter is absolutely likely (a certainty). thus, Likelihood is the probabil-
ity of the predefined population parameters being correct, given the
observed characteristics of a situation. 

Consider the case where there is only one observation. If  the obser-
vation is collected from a known population, it is possible to compute the
probability of the event. For example, if  the characteristics of the present
location are known (geographic location: London, England), and the
objective is to determine tomorrow’s weather, the relevant characteristic
is the probability of a rainy day given this location. Let us assume that
the probability is 2/3 (or a 66% chance) that any day in London will be
rainy. If, on the contrary, the objective is to determine one’s location
based on an observation of rain, the probability appropriateness of
being in London, given that is it raining at this moment, is 2/3 (provid-
ing that the above assumption is correct).

this can be summarized as:ℒ(being in London ∣ it is rainy) =  𝛲(it is rainy ∣ being in London) (2)

Equation 3 uses statistical terminology, but is otherwise the same:ℒ(a population ∣ x) =  𝛲(x ∣ a population) (3)

a population, in and of itself, is an abstraction. In the present con-
text, it is only of interest to determine the probability of obtaining a
given observation or datum in a specified population. the most promi-
nent theoretical population is the normal distribution which is repre-
sented mathematically as 𝒩(μ,𝜎2) where the parameter μ is the mean,
and 𝜎 is the standard deviation. the standardized version of the normal
distribution is also known as the Gaussian distribution, where μ = 0 and𝜎 = 1. a primary characteristic of a normally distributed population is
that it is symmetrical about the mean: that is, observations smaller than
the mean are equally as frequent as observations larger than the mean. 

one difficulty with the normal distribution function is that it cannot
be used to assign a probability to an extremely precise event. For exam-
ple, with IQ scores, it is possible to know the probability of observing an
IQ between 85 and 115, between 99 and 101, or even between 99.9 and
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100.1, but the probability that it is precisely 100 is null (a score of
100.0000… is impossible) because possible IQ scores are continuous (a
person’s score may fall anywhere on a continuum) rather than discrete
(i.e., it is either raining now or not). when working with continuous data,
the probability density is used to return the density of probabilities in a
certain area describing a section of an underlying continuous scale. Here,
we use the probability density function because we typically assign an
integer to describe a participant’s IQ score, rather than determine his/her
IQ to be precisely 120.005. For the normal distribution, the probability
density function, noted conventionally with the letter f, is given by:

f (IQ =  x ∣ 𝒩(𝜇, 𝜎2) ) =  
(4)

where e is the natural logarithm approximately equal to 2.71828. In the
following sections, we use the term probability to refer to both probabil-
ities and probability densities

as mentioned previously, in most applications, the actual value of
the population parameter of interest is unknown. therefore, Likelihood
is computed using an assumption of hypothetical population parame-
ters. when population normality is assumed, the Likelihood function is
further simplified. For example, if  it is assumed that all possible obser-
vations of the population parameter IQ are from a normal distribution
that has a mean μ = 100 and standard deviation 𝜎 = 15, the probability
of observing a given IQ having a value of x, under this model, can be
computed by inserting the IQ value of interest, as shown in Equation 5.
note, again, that while IQ scores are typically reported as integers, the
trait producing the IQ score is continuous, thus it requires that the prob-
ability density function be used. 

Using the probability density function for a continuous variable, as
shown in Equation 4, the probability of observing an IQ of 99, given the
above model of the population, is .0265 or 2.65%. Conversely, if  an IQ
of 99 has already been observed, the probability (2.65%) is equal to the
likelihood that the observation came from a population that was nor-
mally distributed with the mean μ =  100 and the standard deviation𝜎 = 15. Equation 5 describes the relationship between the probability of
observing a certain score, given a population, and the likelihood of a
particular population given that a specific score has been observed.

Likelihood and its use in Parameter Estimation and Model Comparison 69

e-√2𝜋 𝜎(x-𝜇)22𝜎2
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(5)
typically, a sample contains more than a single observation and for

these the Likelihood is the joint probability of all of the individual obser-
vations. If  the sample is comprised of independent observations, joint
probability is found by calculating the product of the probabilities for
each individual observation (Equation 6). 

(6)
the probability values are numbers between 0 and 1. Multiplying

several values smaller than 1 on a computer may yield a number that is
indistinguishable from zero (an underflow error). For example, the likeli-
hood of observing a sample of four IQs of 99 would be .02654 =
.000000493 and for five observations it would decrease to .02655 =
.000000013. Considering this, it is easy to understand how quickly these
values become extremely small with sample sizes that are typical of
behavioural research. although the origins of using log values predate
modern computing, calculating the log of likelihood – log(ℒ) – can be use-
ful to avoid underflow and also because the log of a product is turned
into a sum of  logs (log(a × b) =  log(a) + log(b). the sample log likeli hood
is then calculated by summing the logs of the individual likelihoods
(Hélie, 2006). Using the log of likelihoods also frequently results in equa-
tions that are simpler. note that log likelihoods are always negative val-
ues (but will change to positive values when calculating aIC and BIC as
discussed in a latter section of this paper). see Example 1 in the appen-
dix for code in r to compute the log likelihood of a sample taken from
a normally distributed population.

the log likelihood that the following 10 data (shown in Figure 1):

X = {79, 84, 85, 87, 87, 97, 99, 99, 101, 102},

come from a normally distributed population with a mean of 100 and a
standard deviation of 8, is -39.953, and this value is called the Log Like-
lihood index (see Example 1 in the appendix). For convenience, the log
likelihoods are calculated in the examples. a log likelihood very close to
zero indicates that the selected value for the parameter of interest (a
mean of 100 in this example) is very likely. Conversely, a log likelihood
index that is an extreme negative value would indicate that the assumed
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ℒ(𝒩(𝜇, 𝜎2) ∣ IQ = 99) = f (IQ = 99 ∣ 𝒩(𝜇, 𝜎2))

ℒ(a population ∣ x1, ⋯ , xn) =  𝛲(x1 ∣ a population) × ⋯ × 𝛲(xn ∣ a population)=∏ 𝛲(x1 ∣ a population)
i = 1

n
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parameter is highly unlikely. the size of the calculated Likelihood Index
is not only a function of how likely the sample is, but also a function of
sample size. thus, in isolation, it is impossible to say whether -39.953 is
a “good” or “bad” result, but we may note that the actual mean of this
sample is 92 and not 100, to give some meaning to the -39.953 for the
purposes of this discussion. this will be elaborated upon in a subsequent
section, where log likelihoods are used to compare the relative goodness-
of-fit of differing models.

Using Maximum Likelihood to Estimate Parameters

In cases where the population is assumed to be of a certain distribu-
tion (e.g., normal distribution) but a given parameter is unknown, that
parameter may be estimated by incrementally testing several possible val-
ues until the one that makes the assumed population most likely is found.
this method of estimation is called the Maximum Likelihood Estima-
tion (MLE) method. Using the sample X from the previous section, the
parameter to be estimated is the population mean μ. the process of
using the MLE method to compute differing values for μ until a “most
likely” value for μ is found is given in table 1 (with the value 𝜎 fixed at 8,
arbitrarily).

table 1
The results of using a Simplex algorithm to automate the search for the
log likelihood values associated with the most likely population mean,
given the sample data. The most likely value, of  the values examined 
in this table, is the one whose log likelihood is closest to zero. 

(Here, that value closest to zero is associated with a mean of 92.) 
μ log(ℒ(μ,82)  X)
80. -46.203
82. -42.765
84. -39.953
86. -37.765
88. -36.203
90. -35.265
92. -34.953
94. -35.265
96. -36.203
98. -37.765

100. -39.953

see Example 5 for additional information.
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Given these data, the best-fitting μ seems to be located close to 92. If
a manual search were continued within the range 90 to 94, using smaller
increments, 92.00 would be found after a few iterations. Instead of per-
forming these computations manually, a maximization program, such as
the solver add-in in Excel, can be used to automate the search (Excel’s
solver uses the simplex algorithm; nelder & Mead, 1965). alternately,
Example 5a provides a short simulation in r that may also be used locate
the most likely value for μ. the code given in Example 5b replicate the
values in table 1. 

a way to visualize parameter estimation using MLE is to draw a plot
of the log likelihood as a function of the hypothesized μ. Figure 2, left
panel, shows an example in which 𝜎 is fixed at 8; in the right panel is an
example where both μ and 𝜎 are varied. the shaded cross-section, where𝜎 = 8, corresponds, and is equivalent to, the curve in Figure 2, left panel.
In the right panel, the arrow indicates the “peak” of the dome, or the
point at which the value being tested returns the highest (maximum) like-
lihood value.

Figure 2. One-way ANOVA output for data sets X and Y

Locating the maximum value that will satisfy a given argument can
be summarized with the following notation:�̂� = arg max log ℒ(a population ∣ 𝛸) (7)𝜇∈ℝ
in which μ represents the estimate of the parameter μ and the operator
argmax represents any algorithm that can search for a maximum over
all possible real values of μ. 
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Using Likelihood Ratios to Compare Models

Because many populations are so vast that the population char-
acteristics of interest are not practical to collect as a whole, or are entire-
ly unknown, researchers need a method to determine whether a hypoth-
esized parameter is likely to represent the population of interest. In this
scenario, what the researcher wants to know is “how likely is my pre-
sumed population parameter, (e.g., μ = 100), from this observed sample?”
In less scientific language a researcher may ask: “is my presumption about
this population parameter likely to be accurate, given this sample that i
have collected?” to answer this query mathematically, the researcher
needs to determine how likely the parameter of interest is, given the set
of collected data. returning to scientific verbiage, the researcher’s
hypotheses about the characteristics of a population are models that
need to be evaluated. Frequently, several models are developed for a sin-
gle population parameter. For example: “is the population μ = 92 (equal
to the mean of my sample)?” vs. “is the population μ = 100, which is the
generally accepted mean for iQ?” thus, it is of value to be able to com-
pare these models to determine which is the better fit, given the observa-
tions. one method of model comparison is to compute a Likelihood
ratio. In this context, the Likelihood ratio is an index of the fit of one
hypothetical model relative to another, given the observed sample.

Continuing with the observed IQ scores used in the previous exam-
ples, assume that the population mean is unknown. these two hypothe-
ses may be generated from the aforementioned research questions: H1:
the population is normally distributed with a mean of 92, and H2: the
population is normally distributed with a mean of 100. Using Formula 4,
the two likelihoods are computed as 643.7 × 10-18 for H1 and 6.95 × 10-18

for H2. For both hypotheses, let us assume that the parameter 𝜎 (the pop-
ulation’s standard deviation) is the same as the observed standard devia-
tion of the sample, 8.41. with the sample likelihood for H1 in the numer-
ator and the sample likelihood for H2 in the denominator, the resulting
ratio is 92.6. 

MeE_INT_v37n3-2015_v15_Stampa_07•07-29-02_V30 N2_INT  15-04-23  16:00  Page73



DEnis COUsinEAU, TEREsA A. ALLAn74

as mentioned earlier, log likelihoods simplify these computations,
and yield equivalent conclusions. Here, the log likelihoods for H1 and H2
are -34.98 and -39.51 respectively. the Likelihood ratio is obtained with:
exp (log likelihood H1: – log likelihood H2:). For these log likeli-
hood values, the ratio of log likelihoods can be obtained by entering:
exp(-34.98 – (-39.51)) or: exp(4.53) = 92.7 direct ly into r or Excel.
(note that in Excel the exponent function must be preceded by “=”) due
to rounding errors, the last digit given here is an approximation. 

the Likelihood ratio is an indication of model fit. as calculated
above, using either likelihoods or log likelihoods, the Likelihood ratio
calculated for model H1: μ = 92 vs. H2: μ = 100, is 92.7 to 1. ratios of 20
to 1 can be likened to p value of 0.05; and can be interpreted to suggest
that there is fair evidence in favour of the selected model. If  likelihoods
are used, this is the model whose fit is in the numerator; if  log likelihoods
are used to simplify computation, this is the first value entered into the
subtractive equation (in the example, log likelihood H1). ratios of 100
to 1 are similar to a p value of 0.01, and thus would represent even
stronger evidence for the model (Glover & dixon, 2004). Here, the ratio
is nearly 100 to 1 in favour of H1. this result suggests that the model
assuming  μ = 92 is a better fit than the model μ = 100. 

Conversely, a Likelihood ratio that is close to one provides no evi-
dence in favour of one model over another (i.e., a 1:1 ratio suggests that
neither model is a better fit). when the Likelihood ratio is greater than
one, it favours the model whose likelihood is in the numerator (or is posi-
tioned first in the subtraction for log likelihoods); and when it is less than
one, it favours the model whose likelihood is in the denominator (the
model positioned second in the subtraction for log likelihoods). In this case,
inverting the ratio (or switching the position of the log likelihood values)
will yield the magnitude of support for the alternate model. For example,
if the calculation above is changed to: exp (-39.51-(-34.98)) = .01.
a Likelihood ratio of .01 to 1 indicates no support for H2 as a better fit
than H1 (which is correct, as the 92.7:1 ratio favoured H1 as the better
fit). 

MeE_INT_v37n3-2015_v15_Stampa_07•07-29-02_V30 N2_INT  15-04-23  16:00  Page74



Likelihood and its use in Parameter Estimation and Model Comparison 75

Nested Models
as illustrated in the previous example, a researcher is able to deter-

mine that the fit of one model is superior to that of a competing model
using the Likelihood ratio. If  one model is a nested version of the other,
it is possible to determine if  one model is a significantly better fit than
another model. Calculated sample likelihoods for each model may be
evaluated for statistical significance using a critical value gleaned from
the �2 distribution. this analysis can be conducted only in cases where
models are nested and one has a free parameter while the competing
model has this same parameter fixed, as described in the case below.

a researcher may need to determine whether the observations of IQ
listed above are from a regular population – which in the case of IQ
scores would be normal distribution with the parameter μ = 100. Here,
the parameter μ is fixed a priori (i.e., given previous studies indicating
that the population mean for IQ should be around 100). In this example,
the alternative model is that the researcher believes μ = 100 is outdated
and hypothesizes that the population’s mean is 92 instead, based upon an
observed sample mean of 92. Here, μ is not fixed a priori because it is
derived from the observations and, in statistical terms, μ is free to vary.
thus, the first model is a nested version of the second because both mod-
els are examining the same population parameter μ, and in one model μ
is fixed, while in the alternate model μ varies from that fixed value. these
models are defined as nested because they evaluate the same parame-
ter(s). Models that differ in the number of parameters examined, or that
explore differing parameters altogether are, therefore, not nested.

the method for comparing nested models is to calculate a Likeli-
hood ratio and then transform it into a test statistic, the Likelihood
Ratio Test (Lrt). twice the natural log of the ratio resembles the  dis-
tribution, with the degrees of freedom corresponding to the number of
parameters that are free to vary in the nested model. as there is one para-
meter that may vary in this example, a critical value can be obtained from
a  table, with the degrees of freedom equal to one. In equations, there are
two ways to compute Lrt:

(8)

LRT = 2 log likelihood H1
likelihood H2= 2(log likelihood H1 --- log likelihood H2)( )
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returning to the IQ data given above, we compared the following
two models:

Mfree: 

Mnested: 

the model Mfree contains a free parameter (the observed mean) and
the model Mnested contains the fixed parameter μ = 100. the two models
are identical except for the hypothesized value for the parameter μ. the
observed sample mean is 92.0, and we have already computed the two
likelihoods, -34.98 and -39.51, as well as the Likelihood ratio, -92.7.
twice the base e log of the Likelihood ratio (4.53) is 9.06. when this
value is compared to 3.84, the critical value taken from a 𝜒2(1) distribu-
tion at 𝛼 = 0.05, it is clear that 9.06 is larger. therefore, it is possible to
significantly reject Mnested in favour of Mfree, p < 0.05 (Chernoff, 1954).
to obtain the p value of this significance test, obtain the probability that
a 𝜒2 score with one degree of freedom exceeds 9.06, (shown in the last
line of Example  2). For this example, p =  0.0026. Example  2 in the
appendix gives code to calculate the Likelihood ratio using log likeli-
hoods and performs a test of significance for the hypothesized mean vs.
a fixed population mean in a single sample.

Model comparisons that use twice the log of the likelihood ratio are
based on asymptotic arguments. thus, the 𝜒2 table provides only approx-
imate critical values when the sample sizes are small (n < 30). More accu-
rate decision thresholds are obtained when the sample size is increased
toward infinity, as 𝜒2 critical values become more precise. 

note also that the square root of 9.06 is 3.01. this quantity is found
when computing the t statistic for a student’s t-test with the null hypoth-
esis: H0: μ = 100, 𝛼 = 0.05. this relationship is explained further in the
section Maximum Likelihood vs. Other Estimation Approaches. Likewise,
taking the square root of the critical value, 3.84, yields 1.96, which is the
critical value of a t-test when the sample size is infinite (and also the crit-
ical value of a z-test).

Adjustments using AIC and BIC
In the previous section using nested models, model complexity was

controlled for because the models being compared were identical except
for one free parameter. while the likelihoods of nested models are direct-

𝒩(𝜇 = observed mean, 𝜎 = observed standard deviation)𝒩(𝜇 = 100, 𝜎 = observed standard deviation)
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ly comparable, the likelihoods of non-nested models cannot be directly
compared, and in many cases it is of interest to compare models with dif-
fering parameters. when the two models to be compared are not nested,
there is no single correct method to compare their likelihoods, as the
comparison of likelihoods depends on model complexity. 

Model complexity is the ability of a model to fit any data. Complex-
ity is strongly influenced by the number of free parameters; therefore,
counting the free parameters is a heuristic measure of model complexity.
thus, as the number of free parameters increases, the model complexity
increases as well, and the goodness-of-fit also improves. as a result, some
models, particularly those with several parameters, are capable of fitting
almost any sample. as the purpose of developing models is usually to
explain a particular facet of or phenomenon in a given population, a
model that seems to fit all data sets because it is overly complex is con-
sidered to be over-fitted. as such, an over-fitted model may include so
many parameters that it is of little use to explain the outcome score that
is of interest. 

to prevent over-fitting, models with a higher number of free para-
meters should be penalized before the likelihoods are compared (Hélie,
2006). several methods of imposing this penalty have been proposed:
aIC, aIC-corrected, aIC3, the constrained aIC criterion, BIC, dIC,
and wICvC to name a few (akaike, 1974; Bozdogan, 1987; Hélie, 2006;
wu, Chen, & yan, 2013). of these, we will briefly discuss aIC, aIC-
corrected, and BIC and how these relate to computations of Likelihood.

the akaike Information Criterion (aIC) of a model is based on its
Likelihood and is computed with: 

AIC =  -2 × log(ℒ) + 2k (9)

where k is the number of the model’s free parameters, and ℒ (as above) is
the likelihood, or measure of fit for a model with a given set of parame-
ters to a sample (akaike, 1974; Hélie, 2006). note that log likelihoods are
typically negative numbers and the multiplier -2 in the aIC calculation
changes the sign to positive. therefore, the model that yields an aIC
value closer to zero is the model with the better relative fit. the penalty
term 2k moves the fit away from zero in proportion to the number of free
parameters in the model. to simplify, the primary concept of the aIC is
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that it imposes a “fit penalty” that is proportional to the number of free
parameters in a given model so that there is less “over-fitting” when the
number of parameters examined in a model is increased. 

Using the IQ dataset above, the aIC value for the models μ = 92 and
μ = 100 may be calculated as: AIC =  -2 × (-34.98) +  2 × 1 =  71.96 and  
AIC =  -2 × (-39.51) +  2 × 1 =  81.02 respectively. to determine the relative
Likelihood of these models, in Equation 9, ℒ is replaced with AiC, thus,exp ((AICmax — AICmin) /2) =  92.7 where AICmax is the largest aIC value
calculated for the models being examined (ℒ = -39.51, AICmax = 81.02) and
AICmin is the calculated aIC for the instance of the model that is being
compared (ℒ = -34.98, AICmin = 71.96). In the present case, because both
models are of the same complexity (one free parameter) the penalties
cancel out and the same result as above, exp(4.53) = 92.75, is obtained. 

the aIC index is only valid with large sample sizes, as the aIC is
biased for small samples (i.e., the aIC value calculated in these cases is
overestimated); thus, there is a need to reduce it, or add an additional
penalty for small samples. therefore, for smaller sizes, the aIC-correct-
ed (aICc) can be used. Hurvich and tsai (1989) developed the aICc as a
bias-corrected version of the aIC for cases where sample sizes are small
(n < 100) or where the number of free parameters is large (k > 5). the
aICc formula is as follows:

(10)
where n is number of observations, k is the number of free parameters,
and AiC is the aIC value as calculated above. In short, the aICc con-
tains an additional penalty term that increases as a function of the num-
ber of parameters in the model. the purpose of the additional penalty is
to reduce the aIC overestimation bias that occurs for small sample sizes.
It can be seen that as sample sizes increase, the second penalty term van-
ishes and, thus, aIC and aICc converge to the same value. It may also
be noted that when the models being considered have the same number
of parameters (k), comparing models using aIC and aICc yields identi-
cal results. therefore, in such a case, aICc affords no additional benefit
over aIC, yet there is no adverse consequence of applying the aICc as it
will yield an equivalent model evaluation.

AICc =  AIC + (2k(k+1)
n — k — 1
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the Bayesian Information Criterion (BIC), also known as the
schwarz criterion (schwarz, 1978), has also been developed to compen-
sate for model complexity by adding a penalty term based on the num-
ber of parameters in a given model, therefore preventing over-fitting.
the BIC assumes that model errors are independent, normally distrib-
uted, and homoscedastic (i.e., the error of prediction does not depend on
the scores to be fitted, thus are relatively equal within a given group).
similar to the aICc, the BIC was developed to suit smaller samples; how-
ever the BIC imposes a stricter (larger) penalty. BIC is computed as fol-
lows: BIC =  -2 × log(ℒ) + k log(n) (11)

the BIC is fairly analogous to the aIC except that the penalty term
is based on both the number of free parameters and the sample size. the
logic behind this correction is that the model becomes less flexible as a
function of sample size. that is, it is progressively more constrained by
the data as the sample size increases. when two models are compared
using this method, the model with the lower calculated BIC is interpret-
ed to be the better fit, or the more likely correct, for the given models
(schwarz, 1978).

Burnham and anderson (2004) recommend using the aIC to the
exclusion of BIC, based upon the idea of multimodel interference, the
philosophy of information theory, and the principle of parsimony. to
briefly summarize their recommendation, the aIC is preferred over the
BIC because the model selected by the aIC will be more parsimonious
(be more general/simpler) and the model returned by BIC will be more
complex (include more free parameters). 

Nested Models vs. Model Adjustments
the adjustments (aIC, aICc or BIC) allow any given model to be

compared to any other model. However, these adjustments are only
approximately adjusting for complexity. More precise adjustments exist
(see Grünwald, 2000; Myung, 2000), but they are often impossible to
compute. Conversely, nested model comparisons are based on solid
mathematical foundations. therefore, the statistical significance of a
nested model over a general model cannot be disputed. It is worth not-
ing that although two models may seem unrelated, it is sometimes possi-
ble to develop a generalized model which includes the two competing
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models as special cases/sub-models. see Heathcote, Brown, and
Mewhort (2000), and smith and Minda (2002) who used this approach
to study learning curves and categorization processes, respectively.
developing a generalized model is advantageous because it can be used
to assess the importance of one sub-model relative to another in terms
of the model’s ability to explain the data.

Finally, a caution must be noted here. while the aIC, BIC and Like-
lihood ratio calculations can inform the researcher which of two mod-
els is the most likely, or the best fit, these indices cannot provide any
information about the overall quality of a model taken in isolation. It is
always possible that all of the models being evaluated are poor models.
thus, these formulae can only be applied to determine which model is
the best fit among those being evaluated. 

Advantages and Limitations of the Likelihood Approach

Estimating parameters using Maximum Likelihood Estimation
(MLE), as described previously, is not a guarantee for success (Cousi -
neau, Brown, & Heathcote, 2004). However, statisticians have established
the following properties of the method (see rose & smith, 2001).

Advantages of MLE: Consistency, Normality, and Efficiency
as sample sizes increase, the estimate tends towards the true popula-

tion parameter. thus, for a more accurate estimate, a larger sample is
preferable to a smaller. as sample sizes increase, the error of estimation
is normally distributed. as a consequence, easier-to-apply test statistics
(e.g., t tests, anova) can be used on a set of estimates. also, as sample
sizes increase, no other method can been found to estimate the parame-
ter(s) of a model more efficiently than MLE. For small samples, alterna-
tives to MLE have been proposed, but for very large samples, the benefit
of applying a more time-intensive alternative is marginal. these three
properties are considerable advantages; because of this, MLE underlies
most (if  not all) current statistical tests. It must be noted that MLE does,
however, have two important limitations: non-regular distributions and
biased estimation.
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Limitations
non-regular distributions are models where a parameter value is

constrained by a single observed value. one example is the weibull
model, which is commonly used to describe psychophysics data (e.g., in
nachmias, 1981): the position parameter of this distribution has to be
smaller than the smallest observation. Conversely, the normal distribu-
tion is a regular distribution where μ and 𝛼 are not constrained by any
one observation. Many distributions are non-regular. For non-regular
distributions, there may be no maximum likelihood, or there may be sev-
eral maximum likelihoods – which invalidates the concept of maximizing
likelihood. It is not always easy to identify non-regular distributions.
(see Kiefer, 2005, for a complete list of criteria that must be satisfied
before a model can be declared regular). as MLE is inapplicable for the
analysis of non-regular populations, there are alternative methods that
can be applied. a few of these are discussed briefly in the section entitled
Alternatives to Likelihood.

the second important limitation of MLE is that the estimates that
are obtained using this method are often biased. that is, they contain a
systematic error of estimation. the amount of bias depends on sample
sizes and tends to zero as sample size is increased toward infinity (the
consistency property, above). However, for small samples, estimate bias
can be substantial. a prominent example of this is the normal popula-
tion’s standard deviation. the usual method to estimate 𝛼 is to divide the
sum of the squared deviations by (n -- 1). However, when solving MLE
analytically, the solution requires the sum of squared deviations to be
divided by n. once it was realized that the results of MLE were biased in
this case, a solution to produce an unbiased estimate was found: divide
the sum of squared deviations by (n -- 1) instead of n (see Cousineau,
2010, or Hays, 1973, for a demonstration). 

to illustrate MLE estimation bias in further detail, note that in Fig-
ure 1, left panel, the maximum is located under the point 92 (on the μ
axis) and 7.97 (on the 𝛼 axis). this second number is biased downward.
the bias is corrected by multiplying 7.97 by  (replacing the
division by n with a division by (n--1) returning 8.40. this method to cor-
rect for bias when estimating the standard deviation, however, is only
applicable to normally distributed models. this correction for bias using(n --1) is also used to compute sum of squares in the anova or correla-
tions whenever the assumption of normality is invoked.
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√(n/(n --1)
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the disadvantage resulting from estimate biases may outweigh the
advantages outlined above. thus, when evaluating estimators, finding
and correcting the amount of bias (if  any) in the MLE approach is one
of the first tasks. Unfortunately, biases are present for most parameters
in the vast majority of models (the parameter μ of the normal distribu-
tion is a rare exception). additionally, expressing the specific amount of
bias is often impossible, thus correcting for bias may be also impossible
with particular models (see Cousineau, 2009, for a successful example
with the weibull model).

Maximum Likelihood vs. Other Estimation Approaches

Least Squares Modeling and the Assumption of Normality
the assumption of normality implies that the data are normally dis-

tributed: i.e., the data fit the normal distribution, whose probability
function was given in Equation 1. the normal probability density func-
tion is based on an exponentiation. therefore, when computing the log
likelihood of a single datum, both operators cancel out; thus the follow-
ing simpler formula is obtained:

For a data set X =  {x1, ⋯ , xn} , the likelihood returns:  (12)

(13)

It can be noted from the first term in Equation 13 that this formula
is based on the sum of squared deviations between the observations and
the parameter μ. Expressed verbally, every time a sum of squares is com-
puted, this computation is a log likelihood function assuming normality.
this concept did not escape r. a. Fisher’s notice: he presented the
anova technique using the sum of squares, as the sum of squares is
much easier to compute manually than Likelihood (Fisher, 1925). How-
ever, the two approaches are mathematically equivalent, and return the
same F statistic.

as an example, consider two samples:
X = {79, 84, 85, 87, 87, 97, 99, 99, 101, 102}

Y = {71, 84, 91, 99, 100, 104, 110, 112, 114, 115}.
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i = 1
n2σ21- - 2∑(xi -- 𝜇)2 -- n log(𝜎) log(2𝜋)n
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the most general model would assume that two distinct populations
were sampled to obtain X and Y; and that these two populations may
have distinct means. the best estimates for each population mean are the
observed means of each sample: that is, 92.0 and 100.0, respectively. a
restricted model would assume that both populations are identical and,
consequently, have an equal mean. the best estimate of the population
mean for the restricted model is the grand mean, or the average of all the
observations (96.0), irrespective of whether they come from X or from Y.
Following Fisher, the exact value of the standard deviation for each
group is not relevant, therefore, the pooled standard deviation is used
(spooled = 11.78). 

Mfree: 𝒩(𝜇X =  free, 𝜇Y =  free, 𝜎 =  11.78)
Mnested: 𝒩(𝜇X = 𝜇Y =  96, 𝜎 =  11.78)

the log likelihood for the X and Y samples with respect to Mfree is 
-76.70 whereas the log likelihoods with respect to Mnested is -77.85. the
Likelihood ratio: exp(-76.70 - (-77.85)) is 3.16. this indicates approxi-
mately three times more support for the free model as compared to the
nested model. Lrt is twice the log of the ratio between these two values:
that is, 2.31. However, this quantity is not larger than the 𝜒2(1) critical
value 3.841; therefore, the free model’s fit is better, but not significantly
better, than the nested model. Example 3 in the appendix provides r
code to perform these calculations.

the same data, analyzed using an anova yields the results shown
in table 2.

table 2
One-way ANOVA output for data sets X and Y

df SS MS F

Model 1 320 320 2.31

Error 18 2496 138.6

total 19 2816
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note that the F ratio is identical to the model comparison index that
was calculated above. the exact critical value for F (1, 18) is 4.414, which
is slightly larger than the approximate 𝜒2(1) critical value found earlier.
For larger sample sizes, the F critical values converge toward the 𝜒2 critical
values. For example, F (1, 36) = 4.113, F (1, 180) = 3.894, F (1, 1800) = 3.846
and F  (1,  18,000)  =  3.842. the log likelihood and sum of squares are
equivalent whenever the normal distribution is assumed. this is true for
regression (simple or multiple), for mediation and moderation, and for
structural equation modeling as well. this is why these analyses are often
grouped under the generic term: Least squares Modeling – all of these
were created from model comparisons based on Likelihood.

while it is not a necessity that data be normally distributed in order
to perform statistical analyses, the normal distribution is the only distri-
bution that enables the computation of log likelihoods using the sum of
squared deviations (a much simpler formula). the relative ease of apply-
ing these formulae is likely the reason that these analyses became so
prevalent in the early days of statistics. now, however, with the advent of
fast computing, replacing the normality assumption with any other
assumption regarding the family of distribution is a trivial manipulation.
Example 4 in the appendix provides code demonstrating how to replace
the normality assumption with the Cauchy distribution (a symmetrical
distribution with thicker tails, which allows for the presence of extreme
values).

Bayesian Inference
Bayesian Inference is an extension of the likelihood method with the

addition of one supplement: priors, or prior probabilities. In order to
conduct a Bayesian analysis, priors must first be specified. a prior is an
a priori expression giving the probability that a certain parameter can
take a specific value (e.g., the probability that it will be a rainy day in
London). after a sample is collected, the priors are revised using the like-
lihood function. this “fine tuning” of the priors is called updating, and
returns a posterior. In an ideal world, the new posteriors would become
priors before a new sample is collected, leading to a second round of
updating, etc. Figure 3 illustrates one round for three different samples.
In this figure, the three priors are the same, but the sample sizes are tiny,
very small, and small. as a result, the maximum likelihood becomes
more peaked, resulting in more concentrated posteriors. Both the priors
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and the posteriors are expressed in the form of a distribution that indi-
cates a degree of belief in certain values of the parameters composing the
model. In the special case where the priors assume that the parameters to
be estimated can take any value with the same probability (this is labeled
«no priors») and in that case only, both the most probable Bayesian esti-
mate and maximum likelihood estimate return the same value.
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Figure 3. (top row) Examples of a prior, expressed with a distribution over
the parameters (here 𝛾 and 𝛽); (middle row) likelihood functions
for a very small, small or moderate sample sizes; (bottom row)
posterior, found by multiplying the above two lines. Taken from
Cousineau and Hélie, (2013).

Bayesian Inference can be challenging to apply to behavioural data
for two reasons. First, it is difficult to express prior beliefs regarding cer-
tain parameters, particularly when those parameters relate to subjective
human constructs. For example, how does one formulate a degree of
belief  with regard to a parameter affecting well-being? additionally, in
empirical practice, posteriors from one study rarely become the new pri-
ors of another investigation, as each researcher prefers to state their own
prior probabilities. second, the likelihood must be weighted by a “nor-
malization” term (as indicated in note 1) which weighs the current sam-
ple with respect to all possible samples. Unfortunately, it is often impos-
sible to quantify the normalization terms as this involves solving multi-
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ple integrals. numerical approximations are possible using, for example,
techniques based on the Monte Carlo Markov Chain (Hadfield, 2012).
these, however, can be time consuming to compute and may yield diver-
gent results. a compromise is to ignore the normalization term. this
solution may be used if  only the location of the maximum is required:
i.e., to get a posterior in the form of a single estimate) instead of the dis-
tribution of an estimate. approaches such as these have been proposed:
Maximum likelihood estimation with A Priori (MaP; Birnbaum, 1969),
and Prior-informed Maximum Likelihood Estimation (piMLE; Cou si neau
& Hélie, 2013). 

Alternatives to Likelihood

as mentioned above, piMLE can be used to expand likelihood esti-
mation with priors. other alternatives to MLE are: Maximum Product of
spacing (MPs), Maximum Product of Quantiles (MPQ), and weighted
Maximum Likelihood Estimation (wMLE). the MPs approach, devel-
oped by Cheng and amin (1983), was specifically created for non-
regular models. In this approach, it is not the probability of the individ-
ual datum that is used to compute probabilities, but the spacing between
two successive data points. this method is reliable in every situation and
can be used with success when MLE is not applicable. MPs also tends to
return less biased estimates. the MPQ approach, created by Brown and
Heathcote (2003; also see Heathcote, Brown, & Cousineau, 2004) bases
its estimation on quantiles of data. Because individual data are replaced
by quantiles of the data, this method is less sensitive to outliers. It is
therefore a robust equivalent of MLE (daszykowksi, Kaczmarek, van-
der Heyden, & walczak, 2007). MPQ, however, is sensitive to non-regu-
lar distributions. Lastly, wMLE, created by Cousineau (2009) is not truly
an approach based on MLE, although it does return pseudo-MLE esti-
mators. these estimators are identical to MLE except for the introduc-
tion of weights for the purpose of canceling biases. the wMLE method
is applicable irrespective of the type of distribution (regular or non-
regular), returns unbiased estimators, and has been tested for various
models by nagatsuka, Kamakura, and Balakrishnan (2013) and ng,
Luo, and duan (2011).
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Conclusion

In the social sciences, researchers are often confronted with the chal-
lenge of applying statistical tests that require population parameters that
are unknown (e.g., the population mean). due to the impracticality or
impossibility of  collecting data from the entire population, the
researcher can posit that the population mean is equal to a specified
value. It can then be determined how likely it is that this value is accu-
rate, given an observed sample. one method that can be applied to eval-
uate a hypothetical population mean is to calculate the likelihood of the
sample using the likelihood function. another practical application of
the likelihood function is that it may be used to conduct model compar-
isons to determine the relative likelihood of two or more nested hypothe-
ses to determine which of these is the best fit, given the observed data. 

the relationship between Likelihood and student’s t test and Fisher’s
anova are discussed here, and mini-proofs are given in the examples.
Likelihood can also be used to estimate regression slopes. Multiple re -
gression uses MLE and, as a result, the formulae used known as the
Least squares Methods were developed. In Hierarchical Linear Model-
ing (HLM; woltman, Feldstein, MacKay, & rocchi, 2012) and structur-
al Equation Modeling (sEM; weston & Gore, 2006), the use of Least
squares Modeling formulae is not possible; thus, all of these analyses are
explicitly based on MLE.

Many modern test statistics assume data normality and variance
homogeneity (homoscedasticity). real-world behavioural data, however,
is often non-normal and the within-group variances are never exactly
homogeneous. Collected samples are often rich with outliers, or clusters
of data that pose normality problems, and then the researcher is bur-
dened with deciding whether it is ethical to discard valid outliers in order
to perform statistical tests. these inherently challenging characteristics
of psychological data can create ethical grey areas or require complicat-
ed data transformations; thus, certain data can be difficult to analyze sta-
tistically. Likelihoods can be used to attenuate these challenges.

Likelihood is also very useful in model construction and in the
process of simplifying overly complex models. once the best-fitting para-
meters of a given model are identified, they can be set to zero one by one;
and if  the resulting model is equivalent (in terms of fit) to the best-fitting
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model, it implies that the said parameter is not necessary to capture the
trends seen in the data. the model can then be simplified accordingly;
this approach is automated in stepwise regression (Cohen & Cohen,
1975). when researchers are not required to perform complex data trans-
formations or make difficult decisions regarding whether to include or
discard valid outliers, they are able to more effectively analyze real-world
data where the underlying populations are not best-represented by the
normal distribution. as a result, higher quality, better fitting models can
be generated.

notEs

1. to be precise, Likelihood is proportional to the probability of a certain population
given a sample. a constant is required but this constant does not depend on the
observations, and therefore, can be ignored in all the applications of Likelihood.
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APPENDIX: Examples in R

the present appendix provides five examples of computation done in
the r statistical environment (version 3.0.2, 64-bit) to compute Likeli-
hood for model comparisons and parameter estimation. Please note that
while on some computer systems, code can be copied directly from a pdf
document to r, not all systems recognize the carriage returns (“enters”
at the end of each line). If  errors are encountered in copying and running
any of the following examples, this can be solved by copying the text first
into a text editor program, such as notepad++ for the PC, or Xcode or
tincta for the Mac, and confirming that the lines of code have not been
blended together (by going to the end of each line and adding an extra
“enter”). 

1. Computing the log likelihood from a sample, assuming a normal popu-
lation:

# define the data into a vector.

data <- c(79, 84, 85, 87, 87, 97, 99, 99, 101, 102)

# compute the log likelihood; 

# dnorm represents the normal probability density function,

# mean and sd represents the parameters 𝜇 and 𝜎 respectively

logL <- sum( log( sapply(data, dnorm, mean = 100, sd = 8 )))

# a line of code to display the results

cat("log likelihood for this set of data = ", logL)

Likelihood and its use in Parameter Estimation and Model Comparison 89

MeE_INT_v37n3-2015_v15_Stampa_07•07-29-02_V30 N2_INT  15-04-23  16:00  Page89



DEnis COUsinEAU, TEREsA A. ALLAn90

2. Testing a hypothesized mean for a single group, assuming a normal
population:

In this example, the models are identical except that in one case
(Model 1), the mean is the sample mean, 92, whereas in Model 2, the
mean is the default mean for a population of IQ, 100.
# define the data into a vector.

data <- c(79, 84, 85, 87, 87, 97, 99, 99, 101, 102)

# compare two models with parameter sigma set to the observed
standard deviation

logL1 <- sum( log( sapply(data, dnorm, mean = 92,. sd = sd
(data) )) )

logL2 <- sum( log( sapply(data, dnorm, mean = 100, sd = sd
(data) )) )

# the likelihood ratio

r <- exp(logL1 - logL2)

# the model comparison; in this case, the square root is same
as t

F <- 2 * (logL1 - logL2) # same as LRT

t <- sqrt(F)

# get the p value for the found F

pval<-pchisq(F, 1, lower.tail = FALSE)

# a line of code to display the results

cat("log likelihood for this set of data at ",mean(data)," = ",
logL1,"\nlog likelihood for this set of data at mean = 100 = ",
logL2,"\nLikelihood Ratio= ",r,”\np-value = ",pval,"\nANOVA
F= ",F,"\nStudent’s t= ",t)
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3. Using likelihood to determine if two groups are from the same popula-
tion:

this example examines whether two samples come from a single
population or two distinct populations. In either case, the population(s)
are assumed to be normally distributed (normality assumption) and if
there are two populations, it is assumed that they share the same  para-
meter (homogeneity of variances assumption). to test for this, two mod-
els are generated (one being a nested version of the other) and compared
using likelihood ratio. this is the exact logic that underlies the anova test.
# define two data sets into vectors.
IQ1 <- c(79, 84, 85, 87, 87, 97, 99, 99, 101, 102)
IQ2 <- c(71, 84, 91, 99, 100, 104, 110, 112, 114, 115)

# getting the pooled standard deviation as per regular approach
sp <- sqrt( ((length(IQ1)-1)*var(IQ1) + (length(IQ2)-1)
*var(IQ2)) / (length(IQ1) + length(IQ2)-2))

# compute the general model with one parameter per group, using
observed means
logL1 <- sum( log( sapply(IQ1, dnorm, mean = mean(IQ1), sd = sp
) ) ) + 
sum( log( sapply(IQ2, dnorm, mean = mean(IQ2), sd = sp )) )

# compute the nested model, with a single mean for all the data
logL2 <- sum( log( sapply(IQ1, dnorm, mean= mean
(append(IQ1,IQ2)), sd = sp))) +
sum( log( sapply(IQ2, dnorm, mean=mean(append(IQ1,IQ2)), sd =
sp)))

# the likelihood ratio
r <- exp(logL1 - logL2)

# the model comparison; in this case, the square root is same
as t
F <- 2 * (logL1 - logL2) # same as LRT
t <- sqrt(F)

# a line of code to display the results
cat("log likelihood for IQ1= ", logL1,"\nlog likelihood for
IQ2= ",logL2,"\nLikelihood Ratio= ",r,"\nANOVA F=
",F,"\nStudent’s t= ",t)
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4. Running a test of mean on a single group, not assuming a normal dis-
tribution

the normal distribution is a mesokurtic distribution, which means
that extreme values are very rare in this theoretical population. Howev-
er, in psychology, extreme values (outliers) are not that rare. this contra-
dicts the normality assumption. Classical approaches to the problem of
outliers are (a) to remove the extreme values, or (b) to transform the data
to increase their conformity to a normal population. an alternative solu-
tion presented here is to assume a population distribution that better fits
the data. to accommodate the presence of the extreme values, a distrib-
ution with longer tails is needed. one such distribution is the Cauchy dis-
tribution (Forbes, Evans, Hastings, & Peacock, 2010). It has parameters
μ and 𝛽. the parameter μ is the mean of the distribution and the second
parameter, 𝛽, is a scale parameter roughly equal to two-thirds of the
standard deviation. It can be estimated by taking half  the interquartile
range of the data (IQr / 2).

In the example below, IQ is examined. the objective is to determine
if  the group mean IQ is as usual for the general population, 100. the
sample contains one extreme value (154), but after verification, the num-
ber is valid and the researcher is reluctant to eliminate this datum. run-
ning a regular t-test in r with: t.test(IQs, mu = 100), the result is not
significant (t(9)  =  1.61, p =  .142) suggesting a lack of evidence: this
group seems to have nothing unusual even though the sample mean,
109.6, is unusually high. the extreme value, however, has inflated the
sample’s standard deviation, and in turn has increased the standard
error. the inflation of these values may mask a significant difference that
otherwise would be found. the following solves the issue without dis-
carding the outlier.

In the general model fitted below, the mean is free to vary and is set
to the observed mean; and in the nested model, the mean is set to 100.
note that everything is identical to the second example above, except
that the normality assumption (computed using the function dnorm) is
replaced by a Cauchy assumption (computed using the function
dcauchy), which accommodates outliers because the tails of the distrib-
ution are longer (in technical terms, the Cauchy distribution is leptokur-
tic). thus, in this case, the Cauchy distribution is a more correct approx-
imation of a population containing outliers than the normal distribution
in which these values are rare.
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# define the IQ data into a vector.

IQs <- c(79, 101, 101, 102, 106, 110, 113, 114, 116, 154)

# compare two models with parameter beta set to the interquar-
tile range

logL1 <- sum( log( sapply(IQs, dcauchy, location = mean(IQs),
scale = IQR(IQs)/2 )) )

logL2 <- sum( log( sapply(IQs, dcauchy, location = 100, scale =
IQR(IQs)/2 )) )

# the likelihood ratio

r <- exp(logL1 - logL2)

# the model comparison result

F <- 2 * (logL1 - logL2)

the F observed is 5.069, larger than the 𝜒2(1) critical value (3.841).
Hence, there is evidence after all suggesting that the sample does not
come from a population that has a mean IQ of 100. note that this last
conclusion is the correct one as this sample was computer-generated
from a population whose mean was 105.

5. Finding best-fitting parameters using R:

this set of examples shows a few ways that best-fitting parameters
can be searched/estimated. It implements what was called “argmax” in
Equation  7. It is a maximization/optimization procedure that can be
applied to obtain the maximum value that satisfies a given argument. 

5a. A Simplex Algorithm in R (the Nelder & Mead method)
IQ <- c(79, 84, 85, 87, 87, 97, 99, 99, 101, 102)

# We define the log likelihood as a function;

# theta is a vector containing the two unknown parameters 𝜇 and  𝜎 logl <- function(theta, data) {
sum( log( sapply(data, dnorm, mean = theta[1], sd = theta[2] )))

}

constrOptim(

MeE_INT_v37n3-2015_v15_Stampa_07•07-29-02_V30 N2_INT  15-04-23  16:00  Page93



DEnis COUsinEAU, TEREsA A. ALLAn94

# here we provide some initial values to the parameters more or
less randomly

theta = c(100,10),

# this is the function to maximize, with no gradient provided

f = logl,

grad = Null,

# constraints: just one is needed (sigma must be larger than
zero)

ui = matrix(c(0,1),1),

ci = c(0,0),

# use simplex and run maximization (default is minimization)

method="Nelder-Mead",

control=list(fnscale=-1),

# what follows is additional parameters for the function logl

data  = IQ

)

5b. An R Simulation to Produce Table 1 (MLE to estimate the population
mean) 

this example creates a sequence of possible μ where the likelihood
must be evaluated. Currently, the possible μ are between 80 and 100, by
step of 2 (80, 82, 84, …, 100); you can reduce the range and the step sizes
to narrow the search on Line 2 of the code.
data <- c(79, 84, 85, 87, 87, 97, 99, 99, 101, 102)

LIST_OF_MUS <- seq( 80, 100, by = 2) 
# The researcher may change the bounds and precision in the line
of code above

# initialize empty output collector vectors
MU_COLLECTOR<-c()
LOGL_COLLECTOR<-c()
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#*****************ITERATION START****************************

for (POSSIBLE_MU in LIST_OF_MUS) {

# compute the loglikelihood; 
logL <- sum( log( sapply(data, dnorm, mean = POSSIBLE_MU, sd = 8
)))

# collect the results
MU_COLLECTOR   <- append(MU_COLLECTOR, POSSIBLE_MU)
LOGL_COLLECTOR <- append(LOGL_COLLECTOR, logL)
}

#***************ITERATION FINISHED************************
# display results
OUTPUT.COLLECTED<-data.frame(MU_COLLECTOR,LOGL_COLLECTOR)
OUTPUT.COLLECTED

Likelihood and its use in Parameter Estimation and Model Comparison 95
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