
All rights reserved © Preeminent Academic Facets Inc., 2012 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des
services d’Érudit (y compris la reproduction) est assujettie à sa politique
d’utilisation que vous pouvez consulter en ligne.
https://apropos.erudit.org/fr/usagers/politique-dutilisation/

Cet article est diffusé et préservé par Érudit.
Érudit est un consortium interuniversitaire sans but lucratif composé de
l’Université de Montréal, l’Université Laval et l’Université du Québec à
Montréal. Il a pour mission la promotion et la valorisation de la recherche.
https://www.erudit.org/fr/

Document généré le 14 juil. 2025 01:53

Algorithmic Operations Research

Comparisons of Commercial MIP Solvers and an Adaptive
Memory (Tabu Search) Procedure for a Class of 0–1 Integer
Programming Problems
Lars Magnus Hvattum, Arne Løkketangen et Fred Glover

Volume 7, numéro 1, spring 2012

URI : https://id.erudit.org/iderudit/aor7_1art02

Aller au sommaire du numéro

Éditeur(s)
Preeminent Academic Facets Inc.

ISSN
1718-3235 (numérique)

Découvrir la revue

Citer cet article
Hvattum, L. M., Løkketangen, A. & Glover, F. (2012). Comparisons of
Commercial MIP Solvers and an Adaptive Memory (Tabu Search) Procedure for
a Class of 0–1 Integer Programming Problems. Algorithmic Operations
Research, 7(1), 13–20.

Résumé de l'article
The Boolean optimization problem (BOOP) is a highly useful formulation that
embraces a variety of 0-1 integer programming problems, including weighted
versions of covering, partitioning and maximum satisfiability problems. In 2006
an adaptive memory (tabu search) method for BOOP was introduced, and was
proved to be effective compared to competing approaches. However, in the
intervening years, major advances have taken place in exact solvers for integer
programming problems, leading to widely publicized successes by the leading
commercial solvers XPRESS, CPLEX and GUROBI. The implicit message is that an
alternative methodology for any broad class of IP problems such as BOOPs
would now be dominated by the newer versions of these leading solvers. We test
this hypothesis by performing new computational experiments comparing the
tabu search method for the BOOP class against XPRESS, CPLEX and GUROBI, and
documenting improvements provided by the exact codes. The outcomes are
somewhat surprising.

https://apropos.erudit.org/fr/usagers/politique-dutilisation/
https://www.erudit.org/fr/
https://www.erudit.org/fr/
https://www.erudit.org/fr/revues/aor/
https://id.erudit.org/iderudit/aor7_1art02
https://www.erudit.org/fr/revues/aor/2012-v7-n1-aor7_1/
https://www.erudit.org/fr/revues/aor/


Algorithmic Operations Research Vol.7 (2012) 13–20

Comparisons of Commercial MIP Solvers and an Adaptive Memory (Tabu
Search) Procedure for a Class of 0–1 Integer Programming Problems

Lars MagnusHvattuma Arne Løkketangenb Fred Gloverc

aDepartment of Industrial Economics and Technology Management, Norwegian University of Science and Technology,
Trondheim, Norway

bMolde University College, Molde, Norway
cOptTek System Inc., Boulder, CO, USA

Abstract

The Boolean optimization problem(BOOP) is a highly useful formulation that embraces a variety of 0-1 integer
programming problems, including weighted versions of covering, partitioning and maximum satisfiability problems. In
2006 an adaptive memory (tabu search) method for BOOP was introduced, and was proved to be effective compared to
competing approaches. However, in the intervening years, major advances have taken place in exact solvers for integer
programming problems, leading to widely publicized successes by the leading commercial solvers XPRESS, CPLEX
and GUROBI. The implicit message is that an alternative methodology for any broad class of IP problems such as
BOOPs would now be dominated by the newer versions of these leading solvers. We test this hypothesis by performing
new computational experiments comparing the tabu search method for the BOOP class against XPRESS, CPLEX and
GUROBI, and documenting improvements provided by the exactcodes. The outcomes are somewhat surprising.

Key words: Zero-one integer programming, Boolean optimization, Commercial solver, Metaheuristic, Tabu search.

1. Introduction

The Boolean optimization problem(BOOP) rep-
resents a large class of binary optimization models,
including weighted versions ofset covering, graph
stability, set partitioning and maximum satisfiability
problems. These problems are all NP-hard, and in the
past exact (provably convergent) optimization methods
have encountered severe performance difficulties in
these particular applications.

The first computational study of this problem is by
Davoine, Hammer and Vizvári [4], employing a greedy
heuristic based on pseudo-boolean functions. Hvattum,
Løkketangen and Glover [9] in turn introduced simple
iterative heuristic methods for solving BOOP. A more
advanced method, based on adaptive memory strate-
gies from tabu search (TS) was proposed in [10], and
was shown to yield significant computational advan-
tages both in comparison with the preceding heuristic
methods and in comparison with the leading commer-
cial solvers XPRESS [15] and CPLEX [3] available at

Email: Lars MagnusHvattum [Lars.M.Hvattum@iot.ntnu.no],
Arne Løkketangen [Arne.Lokketangen@himolde.no], Fred
Glover [Glover@opttek.com].

the time.

During the past several years, however, dramatic ad-
vances have been reported for the commercial solvers,
enabling the three leading solvers, XPRESS, CPLEX
and GUROBI [8] to solve integer programming prob-
lems far more effectively than in the past. According to
[1], the speed-up of solvingmixed integer programming
(MIP) problems is a factor of about 30 from CPLEX 6.5
to CPLEX 11, and a factor of about 80 from CPLEX
6.5 to GUROBI 3.0. More moderate numbers are re-
ported by Lodi [13], indicating a speed-up of 7.47 from
CPLEX 6.5 to CPLEX 11, while on another set of in-
stances the percentage of instances solved to optimality
increased from 46.5 % for CPLEX 6.5 to 67.1 % for
CPLEX 11. Koch et al. [11] report results showing a
speed up factor of about 7.5 for XPRESS in versions
released between 2003 and 2010.

These impressive performance gains raise the ques-
tion of whether the modern commercial solvers will in
fact dominate alternative methods previously proposed
for various integer programming models, particularly in
the case of models like BOOP that encompass a signif-
icant range of problems. Indeed, Lodi [13] states that,
as techniques from metaheuristics have been incorpo-
rated in the MIP solvers, they can now be seen as com-

c© 2012 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.



14 Lars MagnusHvattum et al. – Comparisons of Commercial MIP Solvers and an Adaptive Memory Procedure

petitive heuristic techniques if used in a truncated way.
For more details on which improvements have been in-
corporated into commercial solvers, see the article by
Linderoth and Lodi [12].

We examine this question by performing new com-
putational experiments comparing XPRESS, CPLEX,
and GUROBI against the tabu search for BOOP. In
making these comparisons, we document improvements
provided by the exact codes and disclose how different
methods perform differently based on the subclass of
test cases considered.

The remainder of this paper is organized as fol-
lows. Section 2. provides a 0–1 integer programming
model for the BOOP and provides a survey of previ-
ous work. Detailed computational outcomes are given
in Section 3., followed by a summary of results and
associated conclusions in Section 4..

2. Problem formulation and search basics

2.1. Problem formulation

The BOOP model involves the objective of max-
imizing a linear objective functionz =

∑n

j=1
cjxj

in binary variables, subject to a Boolean equation
φ(x1, . . . , xn) = 0. Every Boolean function can be
written in disjunctive normal form, allowingφ to be
expressed in the formφ = T1 ∨ . . . ∨ Tm where
each Ti is a product of some non-negated vari-
ablesxj , j ∈ Ai ⊂ {1, . . . , n}, and some negated
variables xj = 1 − xj , j ∈ Bi ⊂ {1, . . . , n}:
Ti = (

∏
j∈Ai

xj)(
∏

j∈Bi
xj). This was the original

formulation by Davoine, Hammer and Vizvari [4]. Fol-
lowing [9], we consider a reformulation based on trans-
formingφ into conjunctive normal form, giving rise to
the following mixed integer programming formulation:

max z =

n∑

j=1

cjxj

∑

j∈Bi

xj +
∑

j∈Ai

(1− xj) ≥ 1, i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

Informally, a BOOP can be regarded as asatisfiability
problem(SAT) that is extended to include an objective
function. For more information on SAT, see for example
[2,6].

2.2. The TS-ACW method: basic search components

We briefly sketch the basics of the tabu search pro-
cedure we employ, called TS-ACW (for Tabu Search
with Adaptive Clause Weights) to provide a general
overview of its operation. A certain familiarity with ba-
sic TS and local search is assumed, and otherwise the
reader is referred to [7]. The search is designed to be
able to move in infeasible space by penalizing an infea-
sibility measure. The basic components of the method,
which derive from a simple version of tabu search, may
be summarized as follows.

The starting solution is randomly generated. A move
is a flip of a variable, as expressed by0 → 1 or 1 → 0.
The search neighborhood is the set of possible flips,
which implies that it has a cardinality equal to the num-
ber of variables. The move selection is greedy, i.e., al-
ways chooses a non-tabu move having the highest move
evaluation. Tabu tenure is drawn at random from the
range{10, . . . , 15}. The aspiration criterion allows a
move to be selected in spite of being tabu if it leads to
a new best solution.

The move evaluation function,Fi has two compo-
nents. One is the change in the objective function value,
and the other is the change in the number of infeasi-
ble rows (or clauses). The cost coefficients are normal-
ized to the range[0, 1], and hence the change∆zj in
the objective function lies in the range[−1,+1]. The
change in the number of infeasible rows,∆Vj , is usu-
ally a small positive or negative integer. These two com-
ponents are dynamically balanced by a weight,w, to
keep the search focused around the infeasibility bar-
rier, thus yielding a move evaluation function given by
Fj = ∆Vj + w ∗ ∆zj. The adaptive weightw is ini-
tially set to 1, and is updated every iteration as follows:
If the current solution is feasible, thenw = w + winc,
otherwisew = w − wdec. Computational tests lead to
the choices ofwinc = 0.90 andwdec = 0.35. The ef-
fect of this adaptation is to induce a strategic oscillation
around the feasibility boundary. The move selection and
update function thus becomes as shown in Figure 1.

Adaptive clause weighting is a long-term learning ap-
proach that operates in conjunction with the move eval-
uation function to diversify the search, and is a variant of
an approach from [14]. Considering that some clauses
may be harder to satisfy than others, each clause is as-
signed a weight,Wi. When a clause becomes violated
during the search, the associated weight is incremented.
This information is then used to modify the move eval-
uation function by using a weighted version of∆Vj .



Lars MagnusHvattum et al. – Algorithmic Operations Research Vol.7 (2012) 13–20 15

1: for each variable, evaluate move
2: if aspirationthen
3: select best move
4: else
5: select best non-tabu move
6: end if
7: execute selected move
8: set tabu tenure drawn from{10, . . . , 15}
9: updatew and clause weights

Fig. 1. BOOP move selection and update function.

Full details of the TS-ACW method are given in [10].

3. Computational results

As stated earlier, our goal is to get an indication of the
increased power of the leading general purpose exact
solvers, CPLEX, XPRESS and GUROBI, and to address
the question of how the improvements in these methods
affect their performance in relation to the tabu search
method TS-ACW for solving problems from the BOOP
class.

The various versions of the exact solvers are shown
in Table 1. To carry out a comparative analysis we must
also consider the difference in hardware performance.
Previous tests comparing CPLEX and XPRESS to TS-
ACW were conducted by running CPLEX and TS-ACW
on a 1 Ghz, Intel P3, under Windows 2000, and running
XPRESS on a 400 MHzSun UltraSparc under SunOS
5.7. All the new tests were run on the same machine, an
Intel Core2 Duo, 2.66 GHz, under Windows XP. These
machines have ratings of 769, 154 and 1429 MIPS
(whetstones) respectively. Based on this rating, on data
from [5], and on the number of iterations performed
of TS-ACW per second on the different computers, we
have normalized the computational times presented later
so as to correspond to running times on the newer Intel
Core2 Duo machine. Running times on the UltraSparc
computer have thus been divided by a factor of 7.7, and
the running times on the Intel P3 computer have been
divided by a factor of 3.

The original set of test-cases consisted of 63 major
classes, all generated by Davoine, Hammer and Vizvari
[4]. All together there were 5400 instances. We have
selected instances from classes 23 - 63, as the smaller
test problems were considerably easier, and not as suit-
able for discerning the differences between the various
methods. These selected test-sets thus include instances
containing from 100 variables and 400 clauses (or con-
straints) to those containing 1000 variables and 10,000

clauses. Each test set comprises five different instances
sharing the same size and structure, bringing the total to
205. As these are optimization problems, obtaining fea-
sibility was not a major issue. Detailed results per prob-
lem class are presented after the Acknowledgements. In
the following we discuss results at an aggregated level.

Table 1

Solver Original version New version

XPRESS 12 20
CPLEX 6.5 12.1
GUROBI NA 3.0.1

Solver versions.

The TS-ACW metaheuristic has been run on the new
computer using a time limit of 60 seconds and ten sepa-
rate runs per instance. We report average results for the
latter experiment. The three exact solvers were tested
with a time-limit of 4 hours per instance, with the ex-
ception of XPRESS 12 which was allowed to be run for
up to 24 hours on some selected instance classes.

Table 2 reports the results relative to the performance
of CPLEX 6.0 as run by Davoine, Hammer and Viz-
vari [4]. Each value in Table 2 is the average over all
instances of the ratio of the objective function value ob-
tained by the indicated method to the value obtained by
CPLEX 6.0. Since the objective is that of maximization,
larger values are better. All numbers referring to results
relative to CPLEX 6.0 are given in percentage points.

Table 2

Solver Original version New version

XPRESS 99.465 100.865
CPLEX 100.902 102.112
GUROBI NA 102.190
TS-ACW NA 102.302

Average results (in ratios) over all 205 instances.

We point out that relatively small differences in ratios
amount to somewhat more significant differences in the
actual objective function values obtained. In Table 3 we
compare the average results of TS-ACW with the results
of the new versions of three exact methods, reporting
the minimum, average, and maximum difference on the
complete set of instances. If instead we were to use the
best values from the 10 runs of TS-ACW, the minimum
difference would become 0 as none of the exact methods
are able to find better solutions on any instance.

To further highlight the differences in performance
between the four methods, a pair-wise t-test shows that
TS-ACW is significantly better than any other method.



16 Lars MagnusHvattum et al. – Comparisons of Commercial MIP Solvers and an Adaptive Memory Procedure

P-values from two-tailed tests with TS-ACW (using av-
erage results over 10 runs) against XPRESS, CPLEX,
and GUROBI were 0.0002, 0.0064, and 0.0004, re-
spectively. Comparing XPRESS 12 against XPRESS 20
yields a P-value of 0.0073 and comparing CPLEX 6.5
against CPLEX 12.1 yields a P-value of 0.0018. Hence,
there is a significant improvement in the results obtained
by the new versions of XPRESS and CPLEX. The dif-
ference between CPLEX and GUROBI is not significant
on a 0.05 level, whereas both are significantly better
than XPRESS on any reasonable level.

Table 3

XPRESS CPLEX GUROBI

Minimum -15.0 -15.0 -15.0
Average 1147.3 184.1 100.6
Maximum 31354.7 10552.7 3339.7

Comparing nominal solution values of TS-ACW with the
three exact methods over all the 205 instances. Fractional
differences arise due to using the average result over 10

runs for TS-ACW.

Although these results show the performance out-
comes when the methods are run to their time limits,
they do not indicate how much time each method re-
quired to obtain the best solution that it found. In this
connection, it should be pointed out that the new version
of CPLEX used more time on average than its original
version to find the best solution, even when taking into
account that the hardware is about three times faster.
This reflects the fact that CPLEX finds much better so-
lutions than before, and of course has to work for it.
Table 4 shows the time required for each method to ob-
tain the best solutions found.

For 18 of the 41 instance classes, all versions of all
commercial solvers were able to prove optimality on all
instances. The newest version of CPLEX proved opti-
mality for all instances in 23 classes, but for the remain-
ing 18 classes, only a few instances could be solved to
optimality. Table 5 illustrates the running times required
by the different methods to find optimal solutions and
to prove optimality for the 18 out of 41 classes where
all commercial methods prove optimality. Recall that
running times have been normalized to correspond to
seconds on the newest computer used.

The above results were all obtained using the stan-
dard settings of the commercial solvers. However, both
CPLEX and XPRESS contain some support for auto-
matically tuning the parameters of the solvers. Three
instances, one from each of classes 27, 52, and 61, were
selected and the parameter tuning procedures run with

ample running time allowed, although limiting the run-
ning time for each instance on each parameter set to
300 seconds.

Table 4

Solver Original version New version

XPRESS 680.0 2929.8
CPLEX 952.7 2981.5
GUROBI NA 229.4
TS-ACW NA 3.8

Average time in seconds to find best solution over all 205
instances.

Table 5

Seconds to find Seconds to prove
optimal solution optimality

Original New Original New
Solver version version version version

XPRESS 53.3 155.8 162.8 182.9
CPLEX 178.1 39.3 204.3 58.5
GUROBI NA 8.3 NA 68.0
TS-ACW NA 3.8 NA NA

Results on a subset of 18 classes where all methods find
optimal solutions.

For XPRESS the following settings were adjusted
by the tuning process: 1) primal simplex was chosen
as default instead of automatically deciding the type of
LP-solver, 2) the feasibility pump was set to be active
always, instead of being turned off, 3) Gomory cuts were
turned off except in the root node, and 4) selection of
heuristics in the search tree was set to an undocumented
value. For CPLEX the following settings were adjusted:
1) a limit on 10 passes to generate Gomory cuts instead
of the default which is to let CPLEX decide and 2) the
maximum number of candidate variables for generating
Gomory fractional cuts is increased from 200 to 10,000.
The changed parameters are summarized in Table 6 for
XPRESS and Table 7 for CPLEX.

Table 6

Initial Value
Parameter value after tuning

DEFAULTALG 1 3
FEASIBILITYPUMP 0 1
HEURSEARCHTREESELECT 1 3
TREEGOMCUTS 0 1

Parameter values for XPRESS 20 that were changed after
tuning.

The tuned versions of XPRESS and CPLEX were
run again on the 70 most challenging instances (those



Table 7

Parameter Initial value Value after tuning

gomorycand 200 10,000
gomorypass 0 10

Parameter values for CPLEX 12.1 that were changed after
tuning (names of parameters given as when using the

interactive optimizer).

instance classes where no exact solver had been able
to prove optimality for any instance). The results are
summarized in Table 8, and show that both XPRESS
and CPLEX obtain better results after the tuning pro-
cess. However, only the improvement by XPRESS is
statistically significant, with a P-value of 0.0002 in a
two-tailed pair-wise t-test. Since CPLEX and XPRESS
makes different choices with respect to Gomory cuts in
the parameter tuning process, it may appear that these
choices are not important when solving instances of the
BOOP. For XPRESS, the choice of always using dual
simplex would not degrade the performance by much.
We are thus inclined to suggest that the choices with
respect to running the feasibility pump and the selec-
tion of heuristics in the search tree had an effect on the
performance of XPRESS.

4. Summary of results and conclusions

GUROBI is the fastest MIP solver, and gives slightly
better results than CPLEX. CPLEX is a bit faster than
GUROBI in terms of proving the optimal solution.
XPRESS finds worse solutions than the two other meth-
ods, and uses more time both to find these solutions
and to prove optimality where applicable.

We estimate that CPLEX 12.1 is about 3.5 times
faster than CPLEX 6.5 in terms of solving medium dif-
ficult BOOP instances to optimality. The percentage of
instances solved to optimality has increased from 52.2
% to 62.0 %, but this increase is an overestimation
since the effective time limit was higher for CPLEX
12.1. No speed increase is observed from XPRESS 12
to XPRESS 20, but the results obtained on instances
where optimality is not proven are significantly im-
proved. Also, the percentage of instances solved to op-
timality increased from 50.7 % to 58.0 %.

The tabu search method yields solutions of the same
quality as those obtained by the exact methods when
optimality is proven, and yields better solutions other-
wise. Solutions are found much faster using the tabu
search approach than any of the exact methods, repre-
senting a difference of roughly two orders of magnitude.

In general, TS-ACW performed somewhat better than
in the previous tests, due to better hardware which al-
lowed the search to perform approximately three times
as many iterations within a fixed time limit.

In summary, the computational tests comparing the
TS-ACW method to the best performing commercial
solver GUROBI produced the following outcomes.

Computed over all 205 test problems (Class 23 to
Class 63), the average time for each method to obtain the
best solution it found is 4.1 seconds for TS-ACW (with
a limit of 60 seconds), and 229.4 seconds for GUROBI.

The average of the objective function values (for a
maximization objective) expressed as a ratio to the av-
erage obtained by CPLEX 6.0 is 102.302 for TS-ACW
(when taking the average objective function values, or
102.310 if taking the best objective function value over
10 independent runs), and 102.190 for GUROBI. Ex-
pressed in terms of actual differences in objective func-
tion values, these amounts correspond to an average dif-
ference of 100.6 between TS-ACW and GUROBI, with
a maximum difference of 3339.7. More significantly,
even if terminated after 5 seconds the tabu search ap-
proach yields solutions having the same quality as ob-
tained by the GUROBI exact method when optimality is
proven (126 out of 205 problems, one less than CPLEX
12.1), and TS-ACW yields solutions whose quality is
superior to that of the exact method otherwise (79 out
of 205 problems), even if restricted to 5 seconds per
run. The other commercial solvers did not perform as
well compared to our TS-ACW methods, as shown in
Section 3.

We observe that these results demonstrate the con-
siderable value of the exact solvers in cases where the
overriding concern is to know whether or not optimal
solutions have been found. Specifically, as noted, in 126
of the 205 problems tested (having disregarded the ma-
jority of the instances in the original test bed due to
being too easy to solve) the best of the exact solvers
did in fact verify optimality. Although it is noteworthy
that our method likewise obtained these same solutions
in a fraction of the time required by the exact solver,
we emphasize that there are contexts in which an assur-
ance of optimality (when an exact method succeeds in
achieving and verifying optimality) can be important.

Acknowledgements

The authors thank an anonymous referee for helpful
comments.



Table 8

TS-ACW CPLEX 6.5 CPLEX 12.1 XPRESS 12 XPRESS 20 GUROBI 3.0.1

Avg Sec B Avg Sec B Sec T Avg Sec B Sec T Avg Sec B Sec T Avg Sec B Sec T Avg Sec B Sec T

Class 23 101.933 0.1 101.933 43.6 50.6 101.933 7.1 31.6 101.933 29.2 52.5 101.933 129.8 135.6 101.933 3.4 36.7
Class 24 100.004 0.0 100.004 3.2 6.1 100.004 2.3 3.3 100.004 3.4 4.8 100.004 3.4 4.6 100.004 2.4 5.9
Class 26 100.034 0.1 100.034 40.1 53.1 100.034 14.0 23.0 100.034 27.7 43.5 100.034 35.8 47.6 100.034 8.2 33.5
Class 32 100.359 0.0 100.359 9.4 10.5 100.359 8.6 9.5 100.359 7.0 10.5 100.359 15.8 18.4 100.359 6.6 12.4
Class 33 100.000 0.0 100.000 0.0 1.5 100.000 0.4 0.6 100.000 0.0 0.3 100.000 1.0 1.0 100.000 0.4 1.1
Class 34 100.031 0.4 100.031 15.9 19.6 100.031 3.7 9.9 100.031 7.8 15.4 100.031 31.8 35.0 100.031 3.8 15.7
Class 35 100.000 0.0 100.000 6.5 10.3 100.000 3.9 5.0 100.000 3.2 7.3 100.000 6.8 9.6 100.000 5.6 9.3
Class 41 100.012 0.0 100.012 0.0 0.7 100.012 0.0 0.3 100.012 0.3 0.4 100.012 0.4 0.4 100.012 0.0 0.4
Class 42 100.010 0.0 100.010 0.0 0.7 100.010 0.0 0.2 100.010 0.1 0.2 100.010 0.6 0.6 100.010 0.0 0.4
Class 43 100.000 0.0 100.000 0.0 0.7 100.000 0.0 0.2 100.000 0.1 0.2 100.000 0.7 0.8 100.000 0.2 0.7
Class 44 100.000 0.0 100.000 0.0 1.2 100.000 0.0 0.4 100.000 0.3 0.4 100.000 0.5 1.0 100.000 0.0 0.8
Class 45 101.752 0.2 101.752 876.8 915.0 101.752 90.6 210.9 101.752 248.4 409.9 101.752 1016.4 1110.0 101.752 29.0 248.0
Class 46 100.000 0.0 100.000 53.1 62.4 100.000 8.0 15.8 100.000 18.3 25.2 100.000 24.0 27.4 100.000 3.8 24.9
Class 48 100.115 0.5 100.115 1944.6 2309.6 100.115 495.2 628.7 100.115 449.8 1618.6 100.115 1282.2 1558.0 100.115 61.0 735.3
Class 50 100.000 0.0 100.000 0.0 0.3 100.000 0.0 0.2 100.000 0.0 0.1 100.000 0.0 0.0 100.000 0.0 0.1
Class 51 101.502 0.0 101.502 155.8 177.7 101.502 36.0 51.3 101.502 91.6 709.4 101.502 153.0 169.4 101.502 9.2 43.3
Class 55 103.280 0.0 103.280 125.0 141.2 103.280 52.7 75.7 103.280 67.5 119.1 103.280 182.8 257.6 103.280 13.8 71.8
Class 56 100.000 0.0 100.000 5.8 9.1 100.000 2.7 4.2 100.000 3.8 5.9 100.000 7.0 7.6 100.000 2.6 7.8
Class 58 100.049 0.0 100.049 104.6 113.3 100.049 22.6 40.9 100.049 53.2 69.4 100.049 69.0 89.6 100.049 6.8 44.5

Avg. 100.478 0.1 100.478 178.1 204.4 100.478 39.3 58.5 100.478 53.3 162.8 100.478 155.8 182.9 100.478 8.3 68.0

Results on classes where all exact methods are able to prove optimality within the time limit. Running times are normalized to
match those of the fastest computer used, reporting time in seconds to best solution (B) and time in seconds to prove

optimality total (T). Results for TS-ACW are averaged over ten runs, each run being terminated after 60 seconds.

Table 9

TS-ACW CPLEX 6.5 CPLEX 12.1 XPRESS 12 XPRESS 20 GUROBI 3.0.1

Avg B Avg B T Avg B T Avg B T Avg B T Avg B T

Class 25 102.610 0.9 102.610 1962.5 2167.9 102.610 302.0 544.8 102.610 389.8 1198.8 102.610 2046.8 2589.8 102.610 12.8 954.3
Class 28 101.077 0.0 101.045 2048.7 2663.6 101.077 57.0 563.6 101.077 695.8 1431.8 101.077 742.0 1383.8 101.077 25.2 607.1
Class 36 105.074 2.7 104.463 844.9 4800.0 105.049 2712.5 13509.0 104.904 662.8 1862.4 104.789 3946.0 14400.0 105.052 35.8 13545.2
Class 37 100.543 0.1 100.543 1369.1 1573.6 100.543 118.3 314.0 100.543 317.7 807.6 100.543 614.2 736.8 100.543 32.2 392.2
Class 39 100.299 1.1 100.178 1601.5 4800.1 100.296 5062.4 10488.3 100.267 1300.1 1862.4 100.272 8829.8 14400.0 100.292 108.6 12452.0
Class 47 100.481 3.0 100.386 1781.5 4800.0 100.484 181.5 4630.5 100.477 1180.6 1862.4 100.484 1790.2 10083.2 100.484 53.6 5523.6
Class 57 104.162 0.8 103.817 1997.8 4251.1 104.162 1249.2 6659.5 104.127 468.3 6803.6 103.957 4692.6 9135.2 104.147 14.0 8513.1

Avg. 102.035 1.2 101.863 1658.0 3579.5 102.032 1383.3 5244.2 102.001 716.4 2261.3 101.962 3237.4 7532.7 102.029 40.3 5998.2

Results on classes containing some instances where only a subset of the exact methods is able to prove optimality within the
time limit. Running times are normalized to match those of the fastest computer used, reporting time in seconds to best

solution (B) and time in seconds to prove optimality total (T). Results for TS-ACW are averaged over ten runs, each run being
terminated after 60 seconds.



Table 10

TS-ACW CPLEX 6.5 CPLEX 12.1 XPRESS 12 XPRESS 20 GUROBI 3.0.1

Avg B Avg B T Avg B T Avg B T Avg B T Avg B T

Class 27 111.192 1.9 110.430 2251.8 4800.0 111.028 3485.9 14400.0 110.938 853.0 11174.4 110.376 10708.6 14400.0 111.098 39.2 14400.0
Class 29 101.288 14.2 100.992 358.0 4800.0 101.221 5449.7 14400.0 101.065 494.2 1862.4 100.779 10384.8 14400.0 101.209 110.6 14400.0
Class 30 100.391 1.4 100.290 225.9 4800.1 100.390 6063.3 14400.0 100.368 1239.2 1862.4 100.370 8708.2 14400.0 100.384 108.2 14400.0
Class 31 101.448 25.0 100.967 2949.9 4800.1 101.216 8985.2 14400.0 100.974 728.7 1862.4 99.965 3697.2 14400.0 101.313 583.8 14400.0
Class 38 100.985 8.8 100.796 743.8 4800.0 100.964 5738.5 14400.0 100.868 982.6 1862.4 100.657 7599.0 14400.0 100.952 120.4 14400.0
Class 40 101.610 13.9 101.078 1581.1 4800.1 101.517 3951.3 14400.0 101.056 758.4 1862.4 100.480 3386.2 14400.0 101.512 642.2 14400.0
Class 49 101.515 15.4 101.060 1649.4 4800.1 101.359 11180.5 14400.0 101.027 822.2 1862.4 100.511 8056.0 14400.0 101.388 652.0 14400.0
Class 52 109.910 4.6 103.342 2040.3 4800.1 109.603 8008.7 14400.0 79.565 724.6 1862.4 103.194 6993.8 14400.0 109.825 75.0 14400.0
Class 53 113.226 0.9 95.555 808.9 4800.0 111.433 10673.6 14400.0 79.487 957.2 1862.4 92.639 124.6 14400.0 111.805 505.8 14400.0
Class 54 114.816 27.1 87.694 4800.1 4800.1 110.368 14118.9 14400.0 66.231 1077.7 1862.4 92.564 121.1 14400.0 112.832 4078.2 14400.8
Class 59 107.363 1.9 106.545 933.3 4800.0 107.194 6202.3 14400.0 106.910 1786.2 11174.4 105.983 10433.4 14400.0 107.184 64.6 14400.0
Class 61 101.556 6.7 101.155 807.4 4800.0 101.408 10844.2 14400.0 101.299 4368.4 11174.4 100.894 3242.2 14400.0 101.441 447.2 14400.0
Class 62 100.984 7.6 100.867 1026.7 4800.1 100.975 1319.7 14400.0 100.960 2110.5 11174.4 100.900 8596.8 14400.0 100.949 89.0 14400.0
Class 63 103.579 13.7 103.103 2715.8 4800.1 103.415 13884.3 14400.0 103.014 4008.4 11174.4 102.159 9147.6 14400.0 103.421 1396.8 14400.0

Avg. 104.990 10.2 100.991 1635.2 4800.1 104.435 7850.4 14400.0 96.697 1493.7 5188.1 100.819 6514.2 14400.0 104.665 636.6 14400.1

Results on classes where none of the exact methods has been able to prove optimality within the time limit on any instances.
Running times are normalized to match those of the fastest computer used, reporting time in seconds to best solution (B) and
time in seconds to prove optimality total (T). Results for TS-ACW are averaged over ten runs, each run being terminated after

60 seconds.

Table 11

CPLEX 12.1 TUNED XPRESS 20 TUNED

Avg B T Avg B T

Class 27 111.093 5145.0 14400.0 110.698 5455.0 14400.0
Class 29 101.241 10712.5 14400.0 101.010 5701.2 14400.0
Class 30 100.391 7211.2 14400.0 100.348 5693.7 14400.0
Class 31 101.290 6588.8 14400.0 101.228 5913.0 14400.0
Class 38 100.960 10707.7 14400.0 100.930 2277.8 14400.0
Class 40 101.486 6277.5 14400.0 101.412 6610.0 14400.0
Class 49 101.363 6225.5 14400.0 101.264 5729.2 14400.0
Class 52 109.769 10530.6 14400.0 109.073 2424.2 14400.0
Class 53 111.451 13378.7 14400.0 110.779 2167.0 14400.0
Class 54 111.155 14279.5 14400.0 110.036 5074.4 14400.0
Class 59 107.191 10738.6 14400.0 106.886 2300.4 14400.0
Class 61 101.436 8288.7 14400.0 101.340 4322.8 14400.0
Class 62 100.970 5286.1 14400.0 100.931 5613.2 14400.0
Class 63 103.359 11368.5 14400.0 103.106 2506.4 14400.0

Avg. 104.511 9052.8 14400.0 104.217 4413.4 14400.0

Results on classes where none of the exact methods has been able to prove optimality within the time limit on any instances.
Running times are normalized to match those of the fastest computer used, reporting time in seconds to best solution (B) and

time in seconds to prove optimality total (T).



Table 12

#vars #terms %compl #inst

Class 23 100 400 25 5
Class 24 100 400 25 5
Class 25 200 400 25 5
Class 26 200 400 25 5
Class 27 200 1000 25 5
Class 28 200 1000 25 5
Class 29 500 1000 25 5
Class 30 500 1000 25 5
Class 31 500 2500 25 5
Class 32 100 400 50 5
Class 33 100 400 50 5
Class 34 200 400 50 5
Class 35 200 400 50 5
Class 36 200 1000 50 5
Class 37 200 1000 50 5
Class 38 500 1000 50 5
Class 39 500 1000 50 5
Class 40 500 2500 50 5
Class 41 100 400 75 5
Class 42 100 400 75 5
Class 43 200 400 75 5
Class 44 200 400 75 5
Class 45 200 1000 75 5
Class 46 200 1000 75 5
Class 47 500 1000 75 5
Class 48 500 1000 75 5
Class 49 500 2500 75 5

Class 50 100 400 0 5
Class 51 200 1000 0 5
Class 52 500 2500 0 5
Class 53 500 5000 0 5
Class 54 1000 10000 0 5

Class 55 100 400 0 5
Class 56 100 400 0 5
Class 57 200 400 0 5
Class 58 200 400 0 5
Class 59 200 1000 0 5
Class 60 200 1000 0 5
Class 61 500 1000 0 5
Class 62 500 1000 0 5
Class 63 500 2500 0 5

Details of the test instances used, reporting the number of
variables, the total number of terms (non-zero elements in

the constraint matrix), and the percentage of complemented
terms. Classes 23–49 are random instances, classes 50–54
are based on graph stability problems, and classes 55–63

are based on set covering problems.

Received 25-7-2011; revised 14-2-2012; accepted 22-2-2012

References

[1] R.E. Bixby. Mixed integer programming: It works
better than you may think. slide presentation, Gurobi
Optimization, 2010.

[2] S.A. Cook. The complexity of theorem-proving
procedures. In Proceedings of the Third ACM
Symposium on Theory of Computing, (1971) 151–158.

[3] CPLEX, 2011. http://www-01.ibm.com/
software/integration/optimization/
cplex-optimizer/.

[4] T. Davoine, P.L. Hammer, and B. Vizvári. A heuristic for
boolean optimization problems.Journal of Heuristics,
9(2003) 229–247.

[5] J.J. Dongarra. Performance of various computers using
standard linear equations software. Technical Report
CS-(2010) 89-85.

[6] D. Du, J. Gu, and P.M. Pardalos, editors.Satisfiability
Problem: Theory and Applications, DIMACS Series
in Discrete Mathematics and Theoretical Computer
Science. 35(1997).

[7] F. Glover and M. Laguna. Tabu Search. Kluwer
Academic Publisher, Boston, Dordrecht, London, 1997.

[8] GUROBI, 2011.http://www.gurobi.com/.
[9] L.M. Hvattum, A. Løkketangen, and F. Glover. Adaptive

memory search for boolean optimization problems.
Discrete Applied Mathematics, 142(2004) 99–109.

[10] L.M. Hvattum, A. Løkketangen, and F. Glover. New
heuristics and adaptive memory procedures for boolean
optimization problems. In J. Karlof, editor,Integer
Programming: Theory and Practice, CRC Press, Boca
Raton, FL, (2006) 1–18.

[11] T. Koch, T. Achterberg, E. Andersen, O. Bastert,
T. Berthold, R.E. Bixby, E. Danna, G. Gamrath, A.M.
Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs,
D. Salvagnin, D.E. Steffy, and K. Wolter. MIPLIB
2010 - mixed integer programming library version 5.
Mathematical Programming Computation, 3(2011) 103–
163.

[12] J.T. Linderoth and A. Lodi. MILP software. In
J.J. Cochran, L.A. Cox Jr., P. Keskinocak, J.P.
Kharoufeh, and J.C. Smith, editors,Wiley Encyclopedia
of Operations Research and Management Science.
Wiley, 2011.

[13] A. Lodi. MIP computation and beyond. Technical Report
ARRIVAL-TR-0229, 2008.

[14] A. Løkketangen and F. Glover. Surrogate constraint
analysis — new heuristics and learning schemes for
satisfiability problems. In D. Du, J. Gu, and P.M.
Pardalos, editors,Satisfiability Problem: Theory and
Applications, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. 35(1997).

[15] XPRESS, 2011. http://www.fico.com/en/
Products/DMTools/Pages/
FICO-Xpress-Optimization-Suite.aspx.


