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Abstract

We address reoptimization issues for the Steiner tree problem. We assume that an optimal solution is given for some
instance of the problem and the objective is to maintain a good solution when the instance is subject to minor modifications,
the simplest such modifications being vertex insertions anddeletions. We propose fast reoptimization strategies for the
case of vertex insertions and we show that maintenance of a good solution for the “shrunk” instance, without ex nihilo
computation, is impossible when vertex deletions occur. Wealso provide lower bounds for the approximation ratios of
the reoptimization strategies studied.
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1. Introduction

Given a graphG = (V, E), a subsetR ⊆ V of its
vertex-set (the so-calledterminalvertices), and nonneg-
ative integer weights{w(e) : e ∈ E} on the edges
of G, the Steiner tree problem consists in finding a light-
est Steiner tree for(G, R), i.e., a subtreeT of G with
R ⊆ V (T ) (where the weight of a tree is given by the
sum of the weights of its edges).

We will assume in the sequel that the graphG is
complete, and that the weights on the edges induce a
non-negative integer metric on the subsets of size 2
of V , i.e., that for every three verticesx, y, z ∈ V , the
triangle inequality:w(xz) 6 w(xy) + w(xz) holds.
Therefore, an instance of the Steiner tree problem is of
the form(V, R, w) whereR ⊆ V andw is a nonnegative

Email: Bruno Escoffier [escoffier@lamsade.dauphine.fr],
Martin Milanič [martin.milanic@upr.si], Vange-
lis Th. Paschos [paschos@lamsade.dauphine.fr].
1 Part of this work was carried out while the author was with
the LAMSADE on a visiting researcher position supported
by a common CNRS-NSF research project “Algorithmic De-
cision Theory” between the LAMSADE and the DIMACS.

integer metric onV . A Steiner tree for(V, R) is a Steiner
tree for((V,

(

V
2

)

), R).

The Steiner tree problem is one of the most famous
combinatorial optimization problems in network design.
The frequency with which it arises in such applications
motivates numerous works on this problem, under sev-
eral assumptions, hypotheses and models. Steiner tree is
well known to beNP-hard. The first approximation al-
gorithm for it appeared in [1] (see also [10,15]). This al-
gorithm is a primal-dual generalization of the following
simple heuristic: compute the shortest paths between all
pairs of terminal vertices and then compute a minimum-
cost spanning tree over the shortest-path weighted com-
plete graph with vertex-setR. Removal of redundant
edges might be needed in order to transform the tree
so computed to a Steiner tree ofG. The approximation
ratio achieved by this algorithm is bounded from above
by 2. If G is metric, then a minimum-cost spanning tree
on the induced subgraphG[R] (in what follows, given a
subsetV ′ of vertices of a graphG, we denote byG[V ′]
the subgraph ofG induced byV ′) achieves the same ap-
proximation ratio. This result has been improved in [13]
down to 1.55 in complete metric graphs and to 1.28 for

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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complete graphs with edge costs 1 and 2. A survey of
approximation results for Steiner tree problem can be
found in [10].

In this paper we address thereoptimization issue
where the following situation is considered. We are
given an optimum solution of an initial instance and we
wish to maintain a good solution efficiently, when the
instance is slightly modified. This working framework
has already been adopted for several optimization prob-
lems, such as scheduling problems ([5,6,14]) for prac-
tical applications, and classical polynomial problems,
such as the minimum spanning tree, where the goal is
to recompute the optimum solution as fast as possible
([9,11]). It has been also addressed for the minimum
traveling salesman problem in [2] and recently for both
minimum and maximum traveling salesman problems
in [4,7], see [3] for a survey on the topic of reoptimiza-
tion.

For the Steiner tree problem handled here, we assume
that an optimal solutionTopt has already been computed
for a metric complete graphG when some minor mod-
ification occurs in the graph. This modification may be
the arrival of some (one or more) new vertices together
with the edges linking them toG (in such a way that
the extended graphG′ remains complete and metric),
or the removal of some vertices ofG (together with the
edges linking them to the surviving graph). Then, the
question is: “can one maintain, or at least modify very
quickly the existing solution, in order to obtain a good
solution for the modified instance without the need to
recompute such a solution thoroughly?”. The quality of
a solution is measured by computing its approximation
ratio. More precisely, ifT is a Steiner tree for(V, R),
then we say thatT is a ρ-approximationfor (V, R, w)
if w(T ) 6 ρw (Topt) whereTopt is a solution to the
Steiner tree problem. We say thatρ is theapproxima-
tion ratio achieved byT .

Note that very recently, complexity and approxima-
tion algorithms for reoptimizing the Steiner tree prob-
lem have been obtained under another local modifica-
tion setting, consisting of changing the status (termi-
nal/non terminal) of one vertex ([8]).

In what follows, we propose a simple reoptimization
strategy, calledREOPT, mainly based upon a minimum
spanning tree computation adapted for the case stud-
ied (terminal, or nonterminal vertices), that efficiently
tackles the case of vertex insertions in the graph. Let us
note that most of the approximation algorithms known
for the Steiner tree problem seem to be hard to adapt
in order to tackle dynamic situations such as the ones

handled in this paper. In Section 2., we handle inser-
tion of one vertexx in the initial graph. We provide a
tight 3/2-approximation ratio in both cases wherex is
terminal or nonterminal. In Section 3., we handle in-
sertions of more than one vertex in the graph. In Sec-
tion 3.1., we study insertion ofp > 1 nonterminals and
we prove, for this case also, a tight 3/2-approximation
ratio forREOPT. On the other hand, in Section 3.2., we
assume thatp vertices are inserted,k of which being ter-
minals. For this case we show that the ratio ofREOPT
is 2−1/(k+2), while its lower bound is2−2/(k+2).
In Section 4., we provide a general lower bound on the
approximation ratios for a class of solution structures
showing, informally, that if one tries to keep a good ap-
proximation ratio for the modified solution, one even-
tually has to consider vertices that are not contained in
the initial optimal solution.

Finally, for the complementary problem of vertex re-
movals from the initial graph, we show in Section 4.
that, sometimes, complete recomputation of a new so-
lution for the “shrunk” instance is unavoidable.

2. One Vertex is Added

In this section, we consider two cases, according to
whether the new vertex is terminal or not.

2.1. The New Vertex is Nonterminal

LetT be an optimum solution for an instance(V, R, w)
of the Steiner tree problem. Suppose that a nonterminal
vertex, sayx, is added toV together with new edges
{xy : y ∈ V } and their weights such that the new
instance is again metric. LetTx denote a minimum
spanning tree on the vertex-setR ∪ {x}.

We consider the algorithmREOPT which consists in
computing the best solution betweenT andTx (ties bro-
ken arbitrarily). Obviously, its complexity is the one of
computation of a minimum spanning tree on the com-
plete graph induced byR ∪ {x}, i.e.,O(|R|2 log |R|).
Theorem 1 REOPT is a 3/2-approximation algorithm.
This bound is tight.
Proof. Let T̃ denote an optimal Steiner tree in the ex-
tended graph, andT ′ the solution computed byREOPT.
If x /∈ V (T̃ ), thenT is optimum (and so isT ′). So we
may assume thatx ∈ V (T̃ ). Let {x1, . . . , xk} be the
set of neighbors ofx in V (T̃ ). Removingx from T̃ re-
sults in a forestF consisting ofk > 1 treesT̃1, . . . , T̃k

with xi ∈ V (T̃i) for i ∈ [k] (in what follows, we de-
note by[k] the set of integers from 1 tok). Note that
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k 6 |R|, since every treẽTi contains at least one termi-
nal vertex. LetT̃0 denote the set of edges incident tox
in T̃ . Then:

w
(

T̃
)

=

k
∑

i=0

w
(

T̃i

)

Now, link the verticesx1, . . . , xk with a pathP =
(x1, . . . , xk). Together with the trees̃Ti (i > 1), this is
a Steiner tree on the initial graph, the value of which
is at leastw(T ). By triangle inequality, we get that
w(P ) 6 2w(T̃0). Therefore:

w (T ′) 6 w(T ) 6 2w
(

T̃0

)

+

k
∑

i=1

w
(

T̃i

)

(1)

Let i ∈ [k]. Using an Euler tour onT̃i (and
triangle inequalities), we can easily find a path
Pi = (xi, v

1
i , . . . , vki

i ) starting in xi and contain-
ing all the terminal verticesv1

i , . . . , vki

i of T̃i such
that w(Pi) 6 2w(T̃i). Then, using again the trian-
gle inequality (w(xxi) + w(xiv

1
i ) > w(xv1

i )), we
get that the path(x, v1

i , . . . , vki

i ) has value at most
w(xxi) + 2w(T̃i). Then, the union of thesek paths
(x, v1

i , . . . , vki

i ) is a Steiner treeT ′′ of value at most
w(T̃0) + 2

∑k

i=1 w(T̃i). Since this is a spanning tree
on R ∪ {x}, we obtain:

w (T ′) 6 w (Tx) 6 w (T ′′) 6 w
(

T̃0

)

+ 2

k
∑

i=1

w
(

T̃i

)

(2)
The sum of (1) and (2) leads to:

2w(T ′) 6 3
k

∑

i=0

w(T̃i) = 3w(T̃ ),

which proves the upper bound claimed.
For the tightness of the lower bound, consider the fol-

lowing instance (see Figure 1). In the initial graph, there
are two groupsV1 andV2 of n terminal vertices each,
and one nonterminal vertexv. The weight betweenv
and a vertex inV1 is equal to 1, as well as the weight
between the new vertexx and any vertex inV2; also,
the weight betweenx andv is 1. All other weights are
equal to 2.

Then, on the initial instance, an optimum solutionT
is given by the union of all edges betweenv and a vertex
in V1 and a path starting inv and containing all the
vertices inV2: w(T ) = 3n.

Given the symmetry of the final instance, it is easy
to see that an optimum spanning tree onR ∪ {x} has

Fig. 1. Instance with edges of weight 1.

the same value. However, the Steiner tree depicted in
Figure 1 has value2n + 1.

Finally, let us note that this example also shows that
the result remains tight even if we consider instances
with all the weights 1 or 2.

If the number of terminal vertices is small, then one
can slightly improve the bound of Theorem 1.REOPT
is aρ′-approximation algorithm, where:

ρ′ 6 2 −
1

2
(

1 − 1
|R|

) =
3

2
−

1

2(|R| − 1)
(3)

Indeed, when computing the pathP , by triangle inequal-
ity we get thatw(P ) 6

∑k−1

i=1 (w(xxi) +w(xxi+1)) =

2w(T̃0) − w(xx1) − w(xxk). Choosing (without loss
of generality, by relabeling if necessary)xx1 andxxk

as the two heaviest among the edgesxxi, we have
w(xx1) + w(xxk) > 2w(T̃0)/k and thenw(P ) 6

2(1 − 1/k)w(T̃0). Then, inequality (1) becomes

w (T ′) 6 w(T ) 6 2(1 − 1/k)w
(

T̃0

)

+

k
∑

i=1

w
(

T̃i

)

Adding this new inequality with coefficient 1 and in-
equality (2) with coefficient1− 2/k, and using the fact
thatk 6 |R| leads to (3).

If, instead of starting with an optimal solutionT ,
we start from aρ-approximate solution, a slight mod-
ification of the proof of Theorem 1 easily leads to the
fact that the solution computed byREOPT is a ρ′-
approximation, where:ρ′ 6 min{2, 3ρ/(1 + ρ)}. In-
deed, inequality (2) is still valid (hence the approxima-
tion ratio is always bounded above by 2) and inequal-

ity (1) becomesw (T ′) 6 2ρw
(

T̃0

)

+ρ
∑k

i=1 w
(

T̃i

)

.

Adding this new inequality with coefficient 1 and in-
equality (2) with coefficientρ gives the upper bound
3ρ/(1 + ρ).

Finally, if we redefineT ′ to be the shortest amongT ,
Tx, andT ′′, whereT ′′ denotes a minimum spanning
tree on the vertex-setV (T ) ∪ {x}, then the so ob-
tained algorithm again has a tight approximation ratio
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of 3/2 − Θ(1/|R|).

The result given here allows one to measure the qual-
ity of the initial solutionT in the final instance if no
reoptimization at all is allowed.
Proposition 1 Let T be aρ-approximation for an in-
stance(V, R, w) of the Steiner tree problem. Suppose
that a nonterminal vertex, sayx, is added toV to-
gether with new edges{xy : y ∈ V } and their weights
such that the new instance is again metric. Then,T is
a ρ′-approximation for the extended instance such that:
ρ′ 6 2(1 − (1/|R|))ρ. This bound is sharp.
Indeed, from the previous discussion we easily get

w(T ) 6 2ρ(1 − 1/k)w
(

T̃0

)

+ ρ
∑k

i=1 w
(

T̃i

)

and

the approximation ratio follows. For the sharpness of
the bound, let the weights of edges connecting the new
vertexx to the vertices ofR be equal to 1, and let all
the remaining edge-weights be equal to 2. If we take
the current Steiner tree to be an optimal Steiner tree
in G, thenw(T ) = 2(|R| − 1), while the new optimal
weight is|R|.

2.2. The New Vertex is Terminal

In this subsection, we consider the case when the
added vertex is terminal. As previously, letT be an op-
timum solution for an instance(V, R, w) of the Steiner
tree problem. Suppose that a terminal vertex, sayx, is
added toV together with new edges{xy : y ∈ V } and
their weights such that the new instance is again metric.
Let Tx denote a minimum spanning tree on the vertex-
setR ∪ {x}, and letT ′′ denote the treeT , augmented
with a lightest edge connecting a vertex ofR with x.

In this case,REOPT computes the solutionT ′ which
is eitherTx andT ′′, whichever is cheaper (ties broken
arbitrarily). The running time isO(|R|2 log |R|).
Theorem 2 REOPT is a 3/2-approximation algorithm.
Furthermore, this bound is tight.
Proof. As in the proof of Theorem 1, letx1, . . . , xk

denote the neighbors ofx in an optimum solutionT̃
on the extended graph, let̃T1, . . . , T̃k be the connected
components obtained by removingx from T̃ (with xi ∈
V (T̃i)), and let T̃0 be the union of edgesxxi. Then
w(T ′) =

∑k

i=0 w(T̃i), and, as previously, the minimum
spanning treeTx on R ∪ {x} satisfies:

w (T ′) 6 w (Tx) 6 w
(

T̃0

)

+ 2
k

∑

i=1

w
(

T̃i

)

(4)

If, as in the proof of Theorem 1, we link the verticesxi

by a pathP1 = (x1, . . . , xk), then the union ofP1

and T̃i is a tree of value at most2w(T̃0) − w(xx1) −

w(xxk) +
∑k

i=1 w(T̃i). Then, to get a Steiner tree, we
have to connectx. Note that each̃Ti (and in particu-
lar T̃1) has at least one terminal vertex. If we linkx to
one terminal vertex of̃T1, then this edge has value at
mostw(xx1) + w(T̃1).

SinceT is an optimum solution on the initial instance,
w(T ) 6 2w(T̃0) − w(xx1) − w(xxk) +

∑k

i=1 w(T̃i).
Moreover, since each terminal vertex is inV (T ), the
edge used byREOPT to connectx has value at most
w(xx1) + w(T̃1). Then:

w (T ′′) 6 w(T ) + w (xx1) + w
(

T̃1

)

6 2w
(

T̃0

)

+
k

∑

i=1

w
(

T̃i

)

+ w
(

T̃1

)

− w (xxk)

We can do the same thing choosing, instead ofT̃1, each
of theTj ’s:

w (T ′′) 6 2w
(

T̃0

)

+

k
∑

i=1

w
(

T̃i

)

+w (Tj)−w (xxj−1)

Summing up these inequalities leads to:

kw (T ′′) 6 (2k−1)w
(

T̃0

)

+(k+1)
k

∑

i=1

w
(

T̃i

)

(5)

Adding (4) with coefficient(k − 2) and (5) with coef-
ficient 1 gives:

(2k − 2)w (T ′) 6 (3k − 3)

k
∑

i=0

w(T )

The tightness of the lower bound follows from the in-
stance given in the proof of Theorem 1 (Figure 1, con-
sidering nowx as a terminal vertex).

As in Theorem 1, this result can be slightly improved
when the number of terminal vertices is small. More pre-
cisely, using the fact that we can assume that each non-
terminal vertex has degree at least 3 in an optimum so-
lution (since each optimum solution can be easily trans-
formed into another one where the degree of all nonter-
minal vertices is at least 3), one can see that linkingx to
a terminal vertex of̃Ti costs at mostw(xxi)+w(T̃i)/2.
Then, inequality (5) becomes

kw (T ′′) 6 (2k − 1)w
(

T̃0

)

+ (k + 1/2)
k

∑

i=1

w
(

T̃i

)
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Adding this new inequality with coefficient 1 and
inequality (4) with coefficient(k − 3/2) shows that the
output solution is((3/2)−(1/(8|R|−6)))-approximate.

Moreover, as previously, if we start from aρ-
approximate solution instead of an optimum one, we
get amin{2, 3ρ/(ρ + 1)}-approximate solution.

As in the previous subsection, the result given here
allows one to measure the quality of the initial solu-
tion T in the final instance if no reoptimization at all is
allowed i.e.,T is maintained and we are only allowed
to connectx).
Proposition 2 Let T be aρ-approximation for an in-
stance(V, R, w) of the Steiner tree problem (with|R| >

2). Suppose that a terminal vertex, sayx, is added toV
together with new edges{xy : y ∈ V } and their weights
such that the new instance is again metric. LetT ′′ de-
note the treeT , augmented with a lightest edge con-
necting a vertex ofR with x (ties broken arbitrarily).
Then,T ′′ is a ρ′-approximation for the extended in-
stance such that:ρ′ 6 (2 − (1/|R|))ρ.
The bound directly follows from the fact that

kw (T ′′) 6 (2k− 1)ρw
(

T̃0

)

+(k +1)ρ
∑k

i=1 w
(

T̃i

)

(andk > 2 otherwiseT ′′ is optimum). The same in-
stance as in Proposition 1 shows the sharpness of the
bound.

3. More Vertices are Added

In this section, we consider two cases, according to
whether a set of nonterminal vertices or a set including
both terminal and nonterminal vertices is inserted into
the current graph.

3.1. Nonterminal Vertices

LetT be an optimum solution for an instance(V, R, w)
of the Steiner tree problem. Suppose thatp nontermi-
nal verticesY = {y1, . . . , yp} are added toV together
with new edges and their weights such that the new
instance is again metric.

We generalizeREOPT as follows. ForY ′ ⊆ Y ,
let TY ′ denote a minimum spanning tree on the
vertex-setR ∪ Y ′. REOPT computes the solutionT ′

which is the cheapest one among the trees from
{T } ∪ {TY ′ : Y ′ ⊆ Y } (ties broken arbitrarily). The
running time is at mostO(2p(|R| + p)2 log (|R| + p)).
Theorem 3 REOPT is a 3/2-approximation algorithm.
This bound is tight.

Proof. Let Ỹ = V (T̃ ) ∩ Y be the set of new vertices
used by an optimum solutioñT . We consider the con-
nected components̃T1, . . . , T̃k of the subgraph obtained
from T̃ when we remove the new vertices. Moreover,
let us denote byX1, . . . , Xq the connected components
of the subgraph obtained from̃T when we remove the
initial vertices. Finally, if in T̃ there is an edge be-
tween T̃i and Xj , we denote this edge byeij . Note
that the bipartite graphB = [U, L, Ẽ] whereẼ is the
set of these edgeseij , U = {T̃i, i = 1, . . . , k} and
L = {Xj , j = 1, . . . , q}, is a tree. Obviously:

w
(

T̃
)

=

k
∑

i=1

w
(

T̃i

)

+

q
∑

j=1

w (Xi) + w
(

Ẽ
)

(6)

First, we bound from above the value of the initial so-
lution T . Starting fromT̃ , we remove all theXj ’s (and
edges incident to it), in order to get a solution on the
initial instance.

ConsiderXj and add to it the edgeseij of T̃ inci-
dent to it (together with the vertex of̃Ti extremity of
edgeeij). This is a tree; using an Euler tour on this
tree (and removing the vertices inXj), we can connect
theT̃i’s adjacent toXj using a pathPj of value at most

2
(

w(Xj) +
∑

i|eij∈Ẽ wij

)

. More precisely, if we note

dXj
= maxi|eij∈Ẽ{w(eij)}, since we compute a path

and not a cycle, we can find a path such that:

w (Pj) 6 2



w (Xj) +
∑

i|eij∈Ẽ

wij



 − dXj

Replacing all theXj ’s (and edges incident to it) by the
pathsPj , we get a solution on the initial instance, the
value of which is at least the value ofT :

w(T ) 6

k
∑

i=1

w
(

T̃i

)

+2

q
∑

j=1

w (Xj)+2w
(

Ẽ
)

−

q
∑

j=1

dXj

(7)
Now, we bound from above the value of a minimum
spanning treeTỸ on R ∪ Ỹ . Starting fromT̃ , now we
have to remove nonterminal vertices from theT̃i’s. We
use the same technique. ConsiderT̃i and the edgeseij

of T̃ incident to it. Again, this is a tree and using a Euler
tour on this tree, we can connect theXj ’s adjacent toT̃i

and the terminal vertices of̃Ti (if any) using a pathP ′
i .

As previously, if we denotedT̃i
= maxj|eij∈Ẽ{w(eij)},

we can find a path such thatw(P ′
i ) 6 2(w(T̃i) +

∑

j|eij∈Ẽ wij) − dT̃i
.
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Replacing theT̃i’s (and edges incident to it) by
theP ′

i ’s, we get a tree onR ∪ Y , the value of which is
at leastw(TỸ ):

w (TỸ ) 6 2

k
∑

i=1

w
(

T̃i

)

+

q
∑

j=1

w (Xj)+2w
(

Ẽ
)

−

k
∑

i=1

dT̃i

(8)
Summing up (7) and (8), we get that the solutionT ′

computed byREOPT satisfies:

2w (T ′) 63

k
∑

i=1

w
(

T̃i

)

+ 3

q
∑

j=1

w (Xj)+

4w
(

Ẽ
)

−

k
∑

i=1

dT̃i
−

q
∑

j=1

dXj

To conclude, using (6), we just have to show that
∑k

i=1 dT̃i
+

∑q

j=1 dXj
> w(Ẽ). The left hand side

corresponds to summing up, for each vertex in the
treeB, the heaviest edge incident to this vertex. This
sum is obviously greater than the total weightw(Ẽ) of
the edges inB: to see this, just consider thatw(Ẽ) can
be seen as the sum, for each vertex (except the root),
of the edge linking this vertex to its father.

The complexity ofREOPT is obviously exponential
in p (since, starting from easy instances whereR = V 2 ,
REOPT is, in particular, a 3/2 approximate algorithm for
the Steiner tree problem). This is not of major impor-
tance for our purpose since we look for reoptimization
strategies underminor modificationsof the instance.

Consider now the following strategy: output the bet-
ter among the given initial optimum solutionT and a
ρ-approximate solution to the Steiner tree problem on
R∪ Y produced by some polynomial algorithmA. It is
easy to prove that this strategy gives a3ρ/(1 + ρ) ap-
proximate solution3 . This might be an interesting trade-
off between running time and approximation whenp is
too large for an exhaustive lookup as inREOPT but still
much smaller than the number of nonterminal vertices.

Note finally that hard cases for Steiner tree occur only
when the number of terminals is large, since otherwise
the problem can be optimally solved ([12]).

2 An optimal solution of these instances is a minimum span-
ning tree, which can be easily computed.
3 Using the fact thatA is ρ-approximate, and inequalities (7)
and (8).

3.2. Several Terminal and Nonterminal Vertices are
Added

LetT be an optimum solution for an instance(V, R, w)
of the Steiner tree problem. Suppose thatp vertices
Y = {y1, . . . , yp} are added toV together with
new edges and their weights such that the new in-
stance is again metric. Among thesep new vertices,
Yt = {y1, . . . , yt} are terminal, while the remaining
p − t are nonterminal.

As in the case where only nonterminal vertices are
added, forY ′ such thatYt ⊆ Y ′ ⊆ Y , let TY ′ denote a
minimum spanning tree on the vertex-setR∪Y ′. Also,
we consider a minimum spanning treeT (Yt) on the new
terminal vertices, and link this tree toT using a lightest
edge (ties broken arbitrarily) betweenYt and V (T ).
This gives a solutionT ′′.

Then,REOPT computes the solutionT ′ which is the
cheapest one among the trees from{T ′′}∪{TY ′ : Tt ⊆
Y ′ ⊆ Y } (ties broken arbitrarily).

Theorem 4 REOPT is a(2−(1/(t + 2)))-approximation
algorithm.

Proof. As previously, let us denote bỹT an optimum
Steiner tree ofG. The proof of the theorem is based
upon the following two cases:

(1) the maximum weightwTer between two ter-
minal vertices (either new or initial) is greater
thanεw(T̃ ) (the value ofε will be specified later);

(2) wTer 6 εw(T̃ ).

In the first case, letv0 andv1 be two terminal vertices
such thatw(v0v1) > εw(T̃ ). Consider the treẽT rooted
at v0, and consider a depth-first visit of̃T , when v1

is on the right hand side branch of the tree (the last
visited). Then, if we stop this visit when visitingv1 for
the second time, we have a path on all vertices ofV (T̃ ),
of value at most2w(T̃ ) − w(v0v1) (thanks to triangle
inequalities). Hence, a minimum spanning tree on the
terminal vertices has value at most(2 − ε)w(T̃ ).

In the second case, revisit the proof of Theorem 3, in
particular (8) shown there (we use the same notations):

w (TỸ ) 6 2

k
∑

i=1

w
(

T̃i

)

+

q
∑

j=1

w (Xj)+2w
(

Ẽ
)

−

k
∑

i=1

dT̃i

(9)
Note that this solutionTỸ is still feasible, andw(T ′) 6

w (TỸ ).
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Revisit also (7):

w(T ) 6

k
∑

i=1

w
(

T̃i

)

+2

q
∑

j=1

w (Xj)+2w
(

Ẽ
)

−

q
∑

j=1

dXj

(10)
Of course,T is not feasible (as soon ast > 1). But
since the weight between any two terminal vertices is at
mostεw(T̃ ), we can connect thet new terminal vertices
to an initial one with a path of value at mosttεw(T̃ ). In
other words, the solutionT ′′ satisfiesw(T ′′) 6 w(T )+

tεw(T̃ ). Using the fact thatw(T̃ ) =
∑k

i=1 w(T̃i) +
∑q

j=1 w(Xj) + w(Ẽ), we get from (10):

w (T ′′) 6(1 + tε)

k
∑

i=1

w
(

T̃i

)

+ (2 + tε)

q
∑

j=1

w (Xj) +

(2 + tε)w
(

Ẽ
)

−

q
∑

j=1

dXj
(11)

SinceT ′ is better thanT ′′ andTỸ , we can sum up (9)
and (11). Using the fact that

∑q

j=1 dXj
+

∑q

j=1 dXj
>

w(E), we obtain:

2w (T ′) 6(3 + tε)

k
∑

i=1

w
(

T̃i

)

+ (3 + tε)

q
∑

j=1

w (Xj)+

(3 + tε)w
(

Ẽ
)

= (3 + tε)w
(

T̃
)

So, the solutionT ′ is both a(2− ε)- and a(3 + tε)/2-
approximation. Lettingε = 1/(t + 2), we obtain the
result.

Note finally that the running time is roughly

O(max{2p−t(|R| + p)2 log(|R| + p), t2 log t, t|T |}).

When the number of new nonterminal vertices is small,
this is very quick.

The result of Theorem 4 is independent on the num-
ber of nonterminal vertices added. Whent = 0, this is
the 3/2-approximation forp new nonterminal vertices.
Moreover, this bound is almost tight as shown in The-
orem 5 (Section 4.).

4. Negative Results

In the context of reoptimization, it seems natural to
reuse the pre-computed solution when the initial in-
stance is subject to modifications. So, we are interested
in particular in algorithms that do not perform ex nihilo

computations of a new solution but they rather exploit
existing ones. Hence, a natural question is to determine
whether it is always possible to maintain a good approx-
imation ratio using only vertices of the initial solution
plus, eventually, some newly added ones.

The next result shows that this is not the case. Infor-
mally, if we wish to keep a good approximation ratio,
we have to consider vertices not contained in the cur-
rent solution as well.
Theorem 5 Let T be an optimum solution for an in-
stance(V, R, w) of the Steiner tree problem, andX be
the set of new vertices (either terminal or not). LetA be
an algorithm for the reoptimization problem that pro-
duces a Steiner tree whose vertex-set is contained in
V (T ) ∪ X . Then, the following holds:
(1) if X = {x} (one vertex is added, either terminal

or not),A cannot achieve an approximation ratio
better than7/5; furthermore, if edge-weights are
either 1 or 2,A cannot achieve an approximation
ratio better than4/3;

(2) if X = {x1, . . . , xt} where, for i ∈ [t], xi is
terminal (t terminal vertices are added),A can-
not achieve an approximation ratio better than
2 − (2/(t + 2)), even if edge-weights are either 1
or 2.

Proof. We first deal with item 1. We consider the
graph Gi on 5 vertices{vi, u

1
i , u

2
i , u

3
i , ti} (see Fig-

ure 2), with the following weights:
• w(viu

k
i ) = 1, for k, l ∈ [3];

• w(uk
i ul

i) = 2, for k, l ∈ [3], k 6= l;
• w(tiu

k
i ) = 4/3, for k ∈ [3];

• w(viti) = 7/3.
The initial graph is composed ofn copiesG1, . . . , Gn

of Gi, where{uk
i : k ∈ [3], i ∈ [n]} are terminal ver-

tices, with the following weights, fori, j ∈ [n]:
• w(titj) = 3 − ǫ, for i 6= j;
• all the other weights (between vertices of different

copies) are equal to 4.
This instance is metric. An optimum solutionT on this
instance is given by taking edgestiu

k
i , for k ∈ [3] and

i ∈ [n], and by linking verticesti by a path(t1, . . . , tn).
Its total weight isw(T ) = 4n+(3−ǫ)(n−1) ∼ (7−ǫ)n.

Now, we add the new vertexx, wherew(xvi) = 2,
w(xuk

i ) = 3, andw(xti) = 3+4/3 = 13/3 (for k ∈ [3]
andi ∈ [n]). Assume thatx is nonterminal. Then,x is
useless to improve the solutionT by considering only
vertices inV (T ). However, the solutioñT consisting in
taking the edgesxvi andviu

k
i , for k ∈ [3] andi ∈ [n],

has value5n. If, on the other hand,x is terminal, the
result is the same.
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1
1

1

4/3
4/3

4/3
ti

u2
i u3

iu1
i

vi

Fig. 2. GraphGi (other weights correspond to shortest paths).

In the case of weights 1 or 2, we can get a similar
result with a bound of 4/3. We use the same kind of
graph, but instead of consideringGi, we considerHi

on 4 vertices{vi, u
1
i , u

2
i , ti} (see Figure 3) with the

following weights:
• w(viu

k
i ) = 1, for k ∈ [2];

• w(tiu
k
i ) = 1, for k ∈ [2];

• all other weights are equal to 2.
The initial graph is composed ofn copiesH1, . . . , Hn

of Hi, with weight 2 between vertices of different
copies.

ti

u2
iu1

i

vi

Fig. 3. GraphHi with edges of weight 1.

An optimum solutionT for this instance is given by
taking edgestiuk

i , for k ∈ [2] and i ∈ [n], and by
linking verticesti by a path(t1, . . . , tn). Its total weight
is w(T ) = 2n + 2(n − 1) = 4n − 2.

Now, we add the new vertexx, wherew(xvi) = 1,
i ∈ [n], all other weights being equal to 2. Then,x is
useless to improve the solutionT by considering only
vertices inV (T ).

However, the solutionT̃ consisting in taking the
edgesxvi and viu

k
i , for k ∈ [2] and i ∈ [n], has

value3n. This completes the proof of item 1.
For the proof of item 2, i.e., for the case wheret

terminal vertices are added, consider that the initial
graph has 3 verticesv1, v2, v3, with w(v1v2) = 2 and
w(v1v3) = w(v2v3) = 1. Verticesv1 andv2 are termi-
nal. An optimum solution isT = {v1v2}. Then, addt
terminal vertices, such that the weights betweenv3 and
the new vertices are 1, and all other weights are 2.

Then, an optimum solution without consideringv3

has value2(t + 1), whereas a star centered inv3 has
valuet + 2.

We now handle reoptimization when a vertex is
removed from the graph. We so have an initial in-
stance(V, R, w) of the Steiner tree problem, and one
vertexx ∈ V is deleted. Of course, the strategy con-
sisting of computing a minimum spanning tree on the
set of surviving terminal vertices is a 2-approximation.
If we consider, as previously, algorithms operating on
some vertex-set contained inV (T ) \ {x}, then we
cannot improve this ratio.
Theorem 6 Let T be an optimum solution for an in-
stance(V, R, w) of the Steiner tree problem, andx ∈ V
a vertex deleted from the current graph. LetA be an al-
gorithm for the reoptimization problem that produces a
Steiner tree whose vertex-set is contained inV (T )\{x}.
Then,A cannot achieve an approximation ratio better
than2, even if edge-weights are either 1 or 2.
Proof. Let us consider an initial instance consisting ofn
terminal verticesv1, . . . , vn, and two nonterminal ver-
ticesx andy. Weights between terminal vertices are 2,
as well asw(xy), while all other weights are 1. Then
a starT on v1, . . . , vn centered inx is an optimum so-
lution of the initial instance. When deleting vertexx,
the best solution included inT \ {x} is a spanning tree
on v1, . . . , vn, whose value is2(n− 1), while a star on
v1, . . . , vn centered iny has valuen.

5. Conclusion

We have presented in this paper simple and fast re-
optimization algorithms for the Steiner tree problem.
We have handled insertion of one vertexx in the ini-
tial graph. We have provided reoptimization techniques
achieving tight non-trivial approximation ratios for the
cases where one or more vertices are inserted in the
initial instance. We also have provided lower bounds
showing that good approximation ratios cannot always
be obtained without considering vertices that are not
contained in the initial optimal solution. Finally, we
have shown that when handling vertex removals, com-
plete recomputation of a new solution for the resulting
instance is sometimes unavoidable.

The analysis presented in the paper leaves several
open questions that, to our opinion, deserve further re-
search.
(1) Can one devise a reoptimization with a ratio better

than 3/2 in the case where edge-weights are 1 or 2?
We feel that a tight approximation ratio of 4/3
should be possible.

(2) The second question deals with the matching of
the upper and lower bounds ofREOPT in the case
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where several terminal and nonterminal vertices
are added (Section 3.2.). Is it possible to get a
lower bound of2−1/(t+2), or an upper bound of
2− 2/(t+2), or finally, to cross them somewhere
between? Can the negative result of 7/5 in item 1
of Theorem 5 be tightened?

(3) Can we find “general” lower bounds whenp non-
terminal vertices are added? Is it possible, for in-
stance, to get a bound of 3/2 whenp nonterminal
vertices are added?
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