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Robust evaluations for duals of non-negative linear programs
with box-constrained uncertainties
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Abstract. Non-negative linear programs with box-constrained uncertainties for
all input data and box-constrained variables are considered. The knowledge of upper
bounds for dual variables is a useful information e.g. for presolving analysis aimed
at the determination of redundant primal variables. The upper bounds of the duals
are found by solving a set of special continuous knapsack problems, one for each row
constraint.
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1 Introduction

When a linear programming (LP) problem with non-negative coefficients has uncer-
tain coefficients in a known range, what are the bounds where the solution of the dual
problem is located? Namely what are the upper bounds for the dual variables that
are valid for all of the range of uncertainty in the coefficients. This is a new problem
which was not solved previously, as pointed out in (Ioslovich, 2001a).

LP has been a useful tool in economics, operations research, automatic control
etc. for many years. In particular LP problems with non-negative coefficients play
an important role, and e.g. the planning problem considered in the pioneering work
(Kantorovich, 1939) was of this type. Often very large scale LP problems have to be
solved. Despite extended computing capabilities there is still a large difference between
solving an LP problem of intermediate dimension and of large dimension. Different
methods for solving large-scale LP problems are considered in e.g. Adler et al., 1991;
Rogers et al., 1991; Karmarkar et al., 1991; Gill et al., 1995; Zhang, 1996). Large
LP problems almost always contain a significant number of redundant constraints and
variables. This means that some constraints will never be violated and some variables
will definitely be on either the zero or maximal bound. Therefore it is in general worth
while to devote some effort to presolving analysis and considerably reduce the size of
the problem. In this way, sometimes originally untractable problems can be solved.
However, the main effect is that significant computational resources may be saved.

Various presolvers are described in (Karwan et al., 1983; Brearly et al., 1975;
Mészáros and Suhl, 2003; Sadhana, 2002; Paulraj et al., 2006; Gould and Toint, 2004).
Nowadays presolvers are an integral part of many widely used LP-solvers, such as
CPLEX, LIPSOL, MOSEK, and others. An interesting introduction to presolving
together with important results can be found in (Gould and Toint, 2004). These pre-
solvers play a significant role in the ability of the mentioned packages to handle very
large size problems. One must keep in mind that, when pushing the button in order to
solve a large scale LP, usually, by default, the first step will be a presolving procedure.

It is also well known, that the input data are not exact for most large-scale prob-
lems. This problem have been considered in (Ben-Tal and Nemirovski, 2000) where
possible infeasibility and the robust counterpart problem were studied. The simple
and rather usual situation is that each data item is given in some range, e.g. with
a relative deviation from the given nominal value. Presolving analysis of LP prob-
lems with box-constrained uncertainty in the coefficients is treated in (Ioslovich, 1999,
2001a,b; Ioslovich and Gutman, 2000), where a set of algorithms is presented. In these
algorithms all the evaluations are robust, meaning they are valid when the parameters
of the problem (matrix and objective coefficients, values of bounds, etc.) are known
only within some given range.

When evaluating possibly redundant columns by analysis of the dual problem, it is
useful to know upper bounds of the dual variables. The computation of upper bounds
is a rather complicated and previously unsolved problem. Let us consider the LP
problem in the form

ϕ = f ′x→ max

Ax ≤ l, 0 ≤ x ≤ xu,
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0 ≤ l, 0 ≤ A, 0 ≤ f, 0 ≤ xu

A ∈ Rm×n, l ∈ Rm, x, xu, f ∈ Rn (1)

All coefficients are assumed to be non-negative. We shall denote the rows of matrix A
as a′i and the columns as sj. The dual problem has the form

φ = l′y + x′uu→ min

f ≤ A′y + u,

0 ≤ y, 0 ≤ u,

y ∈ Rm, u ∈ Rn. (2)

Here y is the vector of dual variables, related to the row constraints, and u is the
vector of dual variables related to the upper bounds of the primal variables. If some of
these bounds are not known, large numbers could be assigned instead. The presolving
method in (Ioslovich and Makarenkov, 1975), and (Ioslovich, 1999, 2001a,b) is based
on a set of tests of a single row or column. The number of calculations in the single
test for one row constraint is of the same order as the problem to find a median of a
set of n real numbers, (Cormen et al., 1990), namely O(n).

Although the non-negativity condition restricts the use of this method, the class
of corresponding LP problems is still large. Let us consider the set of LP problems in
the primal form (1) and in the dual form (2) with bounds of uncertainty for the data

0 ≤ A ≤ A ≤ A,
0 < l ≤ l ≤ l,
0 < f ≤ f ≤ f,
0 ≤ xu ≤ xu ≤ xu,

(3)

where the matrix A consists of elements aij, and the matrix A consists of elements
aij, respectively, and where the inequalities should be interpreted componentwise. We
shall denote the ith row of the matrix A as a′i, and the jth column of the same matrix
as sj. We shall use notations a′i and sj for the ith row and jth column of the matrix
A, respectively. For this set of LP problems we have to find guaranteed evaluations
that will allow us to detect the redundant variables and row constraints, for the given
range of the input data uncertainty.

Among many examples of such LP problems we shall describe two. The first exam-
ple is described in (Ioslovich, 2001a) and it is related to optimal production planning
at a huge industrial plant. The primal variables xj correspond to the vector of the
planned amount of items to be produced, subject to upper limits xuj and the ”row con-
straints” are related to equipment, supplied raw materials, and personnel of different
professions. The list of equipment and production is very huge and hence the dimen-
sionality is very large. Moreover, the plant consists of several subdivisions, each of
them generating its own constraints. The objective is to maximize the planned profit.
The proposed presolving method makes it possible to reduce the problem stated in
(Ioslovich, 2001a) from the size (15000×5000) to about (100×200).

The second example is connected with the problem of ecological monitoring and
control of water quality. From its source, the water it is pumped into intermediate stor-
age. Pumping occurs at discrete moments from different locations. For each moment
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and each location there exists a forecast for the concentration of a set of pollutants.
The amount of water that can be pumped at each moment from each location is lim-
ited. The amount of each pollutant in the intermediate storage is strictly limited.
One has to maximize the total volume of water pumped into the storage within given
constraints. All the given input information has box-constrained uncertainty. The
dimensionality depends on the number of monitored pollutants, time interval, number
of the locations, and can be very huge. However not all the pollutants are critical at
every period, therefore presolving can significantly reduce the size of this problem.

The paper is organized as follows. Sections 2 and 3 briefly summarize the main fea-
tures of the presolving method described in (Ioslovich, 2001a) in relation to redundancy
of the primal variables, while Section 4 contain completely new results concerning eval-
uation of the upper bounds for the dual variables in the presence of box-constrained
uncertainty. Numerical examples are given in Section 5.

2 General background and a principal scheme

The aim of the presolving method (Ioslovich, 2001a) is to extract those constraints
that will always be satisfied because of other constraints, and those variables that can
be set in advance to its boundary values as a result of column redundancy. The scheme
of the method is as follows:

A number of auxiliary small tests are performed, each of them consists of a solution
of an LP problem with one row constraint and box-constrained variables, known as
the Continous knapsack problem, (Dantzig, 1963). These tests, numerically very cheap,
make it possible to evaluate the row constraints and to find and remove some of the
redundant ones. In the second stage, a similar procedure is applied to the dual problem.
This leads to the reduction of the number of variables (columns). Then the first stage
is repeated, and the testing procedure becomes iterative. One can also note that as
a result of the current reduction, the problem is decomposed into a set of smaller
problems.

Finally any standard LP method can solve the problem without difficulty, because
its size becomes acceptable. Computer time is significantly reduced.

Let us consider the auxiliary problem with fixed coefficients and one linear con-
straint

ψ = f ′x→ max

d′x ≤ b,

0 ≤ x ≤ xu,

f ≥ 0, d ≥ 0, b ≥ 0. (4)

The solution of the auxiliary problem (4), which is called the “continuous knapsack
problem” (CKP), was described in detail in Dantzig (1963), p. 517 (see also Appendix
A). From the optimality conditions, and by denoting the dual variable for the single
row constraint as ξ, it follows that

∀(j : fj < djξ), xj = 0;

∀(j : fj > djξ), xj = xuj. (5)

4



Referring to Appendix A, the optimal solution will include the variables xj1 , xj2 , . . . , xjp
,

ordered by the decreasing sequence fj/dj, such that

p
∑

k=1

djk
xjk

= b (6)

All the variables, xjk
except the last one will be set to the upper limit xuj. The last

variable xjp
which corresponds to fjp

/djp
, becomes the basic variable and is included

into the solution with an intermediate value,

0 ≤ xjp
≤ xujp

(7)

The value fjp
/djp

will be equal to the dual variable, ξ. If the basic variable is not
equal to an intermediate value (degenerate case), then it will be assumed that the
dual variable ξ is equal to fjp

/djp
, where p is the last value of the sorted index that

corresponds to the variable included in the solution which was set to its upper bound.
Let us consider the problem of type (4) replacing the constraint d′x ≤ b with a single
constraint of the primal problem (1), namely by the row i. This problem will have the
following form

ϕi = f ′x→ max

a′ix ≤ li

0 ≤ x ≤ xu. (8)

The dual variable of this problem which is calculated similarly to ξ will be denoted as
yui, and the vector of m components yui as yu : yu ∈ Rm. The following theorem was
proved in (Ioslovich and Makarenkov, 1975):

Theorem 1. For the pair of problems (1) - (2) and the set of problems (8) the
following inequalities hold

yi
∗ ≤ yui, ∀(i = 1, ..., n), (9)

where yi
∗ is i -th component of the optimal solution of the dual problem (2).

Using the upper bounds of the dual variables in (9) one can add box constraints
to the dual problem (2). It is however not clear how to find similar upper bounds for
all set of LP problems with box-constrained uncertainty in the input coefficients (3).
This problem will be treated in Section 4, where Theorem 1 will be used.

The problem (8) is aggregated, meaning that all row constraints of the problem (1)
are summed with non-negative coefficients. All the coefficients of aggregation are zero
except the coefficient for the constraint i which is equal to 1. The aggregated problem
has an equal or greater feasible set than the feasible set of the primal problem (1).
Therefore the optimal value of the objective for the aggregated problem can be used
as the upper bound for the objective of the original problem (1).

We shall assume that we have obtained the value ϕl which is an upper bound for
the objective function in all set of problems (1)-(3) such that

f ′x ≤ ϕl (10)

The algorithm how to find ϕl can be found in (Ioslovich, 2001a).
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3 Robust presolving analysis of dual LP problems

For the optimal values of the dual variables from (2) the following inequality holds

l′y + x′uu ≤ ϕl. (11)

The inequality (11) is the corollary of the equality of the optimal values of the criterion
for the primal and dual problems (see Duality Theorem, Dantzig, 1963). Multiplying
the inequality in (2) with the vector xu and summing, one obtains

y′lu + u′xu ≥ f ′xu. (12)

From (11) and (12) it follows that

y′(lu − l) ≥ f ′xu − ϕl. (13)

From (11) it also follows that
l′y ≤ ϕl (14)

Thus one has obtained two inequalities for the dual variables y, without the dual
variables u.

For each dual problem from the set of interval inequalities (2), (3) the inequalities
(11) and (12) have to be satisfied. let us denote

lu = Axu

It follows, according to (3), that

l′y + x′uu ≤ ϕl

y′lu + u′xu ≥ f ′xu. (15)

Summing these inequalities from (15) one obtains

y′(lu − l) ≥ f ′xu − ϕl. (16)

From the first inequality in (15) it also follows that

l′y ≤ ϕl. (17)

One can see that the inequalities (16) and (17) follow from the inequalities (2) and (3).
Using the inequality (16), and assuming that the robust upper evaluation y is

known, we can solve the problem

η
jl

= s′jy → min

y′(lu − l) ≥ f ′xu − ϕl

0 ≤ y ≤ y (18)

Here y is the robust evaluation of upper bounds of the dual variables that will be found
later in Section 4. Now we obtain the following robust test

η
jl
> f j. (19)
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If the inequality (19) is satisfied then the variable xj must be set to zero for all the set
of problems (1), (3), and the column j can be removed.
The second robust test can be obtained by solving the problem

ηuj = s′jy → max

l′y ≤ ϕl

0 ≤ y ≤ y. (20)

This test has the form
ηuj < f

j
. (21)

If the inequality (21) is satisfied, then the variable xj must be set to its upper bound
for all the problems in the set (1), (3).

It means that the value of xj must be at least as large as xuj. It is obvious that the
robust evaluations (bounds) y make the feasible set of the corresponding CKP smaller,
and thus improve the resulting values η and η which are used in the dual tests.

4 Robust evaluation of the dual variables

Let us denote as yu the vector of upper bounds for yu for all set of dual problems (2)
with coefficients from (3). Recall that each component yui of yu has been found by
the solution of the correspondent CKP (8) with a single row constraint i. We have the
following Lemma 1.

Lemma 1: For the dual variable yi of any LP problem (1) from the set (3) the
following inequality is satisfied

0 ≤ yi ≤ yui. (22)

Proof: Theorem 1 holds for all LP problems (1) from the set (3). Hence the following
sequence of inequalities holds

0 ≤ yi ≤ yui ≤ yui (23)

Thus the problem of evaluation of duals is reduced to the problem of finding the upper
bound of yui for the CKP with a single row i from the set (3). Once the vector yu is
found the unknown upper bound y of all duals from (1)-(3) can be set to yu.

Now we shall show how to find yui. Let us denote

cij = f j

aij

aij

, (24)

and let the row vector ci be the ith row of the matrix C. The following CKP can be
considered:

cix → max

aix ≤ li,

0 ≤ x ≤ xu. (25)

7



Solving this problem will yield the optimal value of the dual variable corresponding to
the single row constraint. Let us denote this value as ζi. The following theorem holds:

Theorem 2: A valid choice for yui is yui = ζi, thus the value ζi is the upper bound
for all yi from (3).

Recalling the algorithm (section 2) of solving CKP, let us re-index by m the vari-
ables xj and their coefficients when sorted according to decreasing order of the values

dj = f j/aij. (26)

Let us denote the sequence of indices {m} as M . The value s ∈ M is defined by the
inequalities

m=s
∑

m=1

aimxum ≤ li

m=s+1
∑

m=1

aimxum > li. (27)

From the algorithm it follows that ζi = f s/ais. As a first step of the proof the following
lemma must be formulated.

Lemma 2: Let us consider any LP problem with one row constraint i and upper
bounds for variables x from the set (3). In addition to the set M (see above), the set
Mm will be determined for each value of the index m as follows:

Mm = {1, 2, ...,m− 1} (28)

For each value of the index m ∈ M, and for each value p ∈ M , and the CKP for any
single row i of the set (3), it holds:

∀(p : fp/aip > fm/aim) ⇒ p ∈Mm (29)

Proof: If the index value k is not a member of Mm, then the following inequalities
hold

fm/aim ≥ fk/aik ≥ fk/aik (30)

This inequality is not satisfied for index value p and thus it belongs to Mm.

Proof of Theorem 2. If the inequality ζi ≥ yui is not satisfied for (at least) one of the
CKP from the set (3), then for this row i there exists an index p such that fp/aip > ζi
which corresponds to the optimal solution of that CKP problem. According to Lemma
2, it belongs to the set M s with s determined according to (27), and all indices which
correspond to the variables on the upper bound also belong to the same set Ms. Thus
the total number of non-zero variables is at most s− 1 and the total value of the left
side of the single constraint i, analogously to (27), is

∑s−1

m=1 aimxu which is less then the
corresponding sum for the upper bound, i.e.

∑s
m=1 aimxum < li. It follows that such a

dual variable cannot satisfy the optimal solution of the corresponding CKP.
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5 Numerical examples

The following LP problem of form (1) is considered as a simple example:







































f ′ = (3, 2, 1);
x′u = (1, 1, 2);

A =







1 5 20
2.5 3 1
3 1 5





 ;

l′ = (5, 6.2, 3.8).

(31)

The solution of this LP is

x1 = 1; x2 = 0.8; x3 = 0.

One can see that the optimal solution of the dual problem is non-unique and has to
satisfy the conditions

y3 = 2 − 5y1, y2 = 0, u2 = 0, u3 = 0,

14y1 = 3 + u1,

0.4 ≥ y1 ≥ 3/14. (32)

Thus the upper bound of y1 is attained for the solution

y1 = 0.4, y2 = 0, y3 = 0, u1 = 2.6.

Solving the set of corresponding CKP we get the vector of the upper bounds of the
dual variables,

yu = {0.4, 0.667, 1.0}.

A box-constrained uncertainty was added in the following way

du = 1.05; dl = 0.95; dxu = 1.025; dxl = 0.975;

A = A ∗ du;A = A ∗ dl;

f = f ∗ du; f = f ∗ dl; l = l ∗ du;

l = l ∗ dl;xu = xu ∗ dxu;xu = xu ∗ dxl.

Calculations according to Theorem 2 give the vector of upper bounds of the dual
variables, y = {0.4421; 0.7368; 1.1053}. Within the box-constrained uncertainty, two
extreme cases can be examined that give upper and lower bounds for the objective.
The first is the LP {A, xu, f , l}. This LP gives yu = {0.4421, 0.7368, 0.2211}.
The second case is the LP {A, xu, f , l}, giving yu = {0.3619, 0.6032, 0.9048}. One
can see that in all cases the inequality yu ≤ y holds. A table of numerical results
obtained for large-scale LP problems (without uncertainty in coefficients) is presented
in (Ioslovich, 2001b).

Here we intend to show the results for the randomly generated problem PRIMER2000RS
(size 2000×100) which contains a special modification to ensure redundancy (Ioslovich,
2001b). The MATLAB code of the problem PRIMER2000RS is presented in Appendix
B. Let k1 be the number of redundant rows, k2 the number of variables redundantly
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Table 1: Results of numerical experiments
Run No k11 k12 k13 k21 k22 k23

1 1538 12 15 1999 50 16
2 1298 10 6 1783 22 7
3 1999 47 8 1999 57 8
4 1805 26 10 1999 54 10
5 276 0 39 688 0 40
6 1999 46 15 1999 57 15
7 366 1 10 1999 48 10
8 864 1 34 1999 45 34
9 1818 30 10 1999 54 10
10 765 4 16 1999 47 17

belonging to the zero bound, and k3 the number of variables redundantly belonging to
the upper bound. An uncertainty of 2 per cent was introduced to all input coefficients.
Two iterations of the presolving algorithms were performed. The runs were performed
in a single call in the MATLAB environment. In each run, MATLAB randomly gen-
erated a new LP matrix of equal size. Values of k1, k2, k3 after the first iteration are
denoted as k11, k12, k13, respectively, and the corresponding values after the second
iteration are denoted as k21, k22, k23, respectively. The results of the presolving for
ten randomly generated problems are presented in Table I. The size of the problems
is significantly reduced in all cases. Table I shows how many redundant rows and
columns are determined in each iteration for each problem. The number of the re-
dundant variables on the lower bound and on the upper bound are shown separately.

6 Conclusions

In this paper we have presented new results that improve presolving tests for primal
and dual large scale LP problems. The evaluation of the dual variables of LP problems
with uncertainty in all input data is an important element of the proposed presolv-
ing tests. An algorithm for such an evaluation is presented. The toolbox IVITEST,
(Ioslovich, 2001b), running under MATLAB contains a realization of these algorithms.
The toolbox can be obtained by e-mail on request.

Appendix A

Consider the LP problem (4) noting that it has one linear row constraint only. In-
troduce the auxiliary vector Y with components Yj = djxj. Hence the constraints
are

∑

j

Yj ≤ b,

and
0 ≤ Yj ≤ Yuj
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and the objective is
∑

j

(fj/dj)Yj → max

Now order Y by the decreasing sequence fj/dj,
Yj1, Yj2, ..., Yjp, .... Next chose p such that

p−1
∑

k=1

Yujk < b

and
p

∑

k=1

Yujk ≥ b.

Obviously the optimal solution of (4) will be

p
∑

k=1

Yjk = b,

whereby
Yjk = Yujk, k = 1, ..., p− 1

and Yjp ≤ Yujp.

Appendix B

Here is the MATLAB code of the problem PRIMER2000RS.

globalAl Au;
Al = rand(2000, 100);
[mn] = size(Al);
s = rand(10, 1); a = 100 ∗ rand(1);
b = rand(1) ∗ 1e− 2; c = rand(1) ∗ 1e− 2;
fl = rand(100, 1); fl(1 : 40, 1) = fl(1 : 40, 1) ∗ c;
Al(:, 41 : 80) = Al(:, 41 : 80) ∗ b;
ll = ones(size(Al(:, 1))); ll(1) = ll(1)/a;
xul = ones(size(fl)); dk = 1.02;
Au = Al ∗ dk; xuu = xul ∗ dk;
lu = ll ∗ dk; fu = fl ∗ dk;
k1 = []; k2 = []; k3 = [];
for i = 1 : 2,
[k1, k2, k3, pm, flag, yu] =
ivitest5r(fl, fu, ll, lu, xul, xuu, k1, k2, k3);
la = size(k1); l1(i) = la(1); la = size(k2);
l2(i) = la(1); la = size(k3); l3(i) = la(1);
end;

The matrices l1, l2, l3 contain the values of the variables k1, k2, k3, respectively, from
the first and second iterations.
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