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Abstract

We consider the problem of packing rectangles with profits @ bounded square region so as to maximize their
total profit. More specifically, given a set R of n rectangleghwositive profits, it is required to pack a subset of them
into a unit size square frami@, 1] x [0,1] so that the total profit of the rectangles packed is maximiEed any given
positive accuracy > 0, we present an algorithm that outputs a packing of a subsBt iofthe augmented square region
[1+¢] x [1+ €] with profit value at least1—¢)OPT, whereOPT is the maximum profit that can be achieved by packing
a subset of R in a unit square frame. The running time of therdtgn is polynomial in n for fixed.

Key words: Rectangle packing, approximation algorithms, resourggrantation

1. Introduction tioning of the rectangles &¥ within the frame such that
they have disjoint interiors. The goal is to find a subset

There has recently been an increasing interestin solv- R € R, and a packing oR’ within [0,1] < [0, 1] of max-
ing a variety of 2-dimensional packing problems such as Imum profit, g cr pi. We only consider the version of
strip packing [18,28,32], 2-dimensional bin packing [4— the problem when rotations of the rectangles are not al-
6,29], and rectangle packing [1,2,16]. These problems lowed. Therefore, by scaling the sizes of the rectangles,
play an important role in a variety of applications in it is easy to show that the above problem is equivalent
Computer Science and Operations Research, e.g. cuti0 the problem of packing a s& of rectangles into a
ting stock, VLSI design, image processing, and multi- rectangular frame of widta > 0 and height > 0.

processor scheduling, just to name a few. ) )
This problem is known to be strongly NP-hard even

In this paper we address the problem of packing rect- q the restricted case of packing squares with identical
angles with profits into a unit size square region so as profits [21]. Hence, it is very unlikely that any poly-

to maximi;e the total prpfit of the packed rectangles. nomial time algorithm for the problem exists, and so,
More precisely, we are given a seof n rectanglesk, we look for efficient heuristics with good performance
(i=1,....n) with widthsa; < (0, 1], heightsb; € (0, 1], guarantees. A polynomial time algorithivis said to be
and profitsp; > 0. For a given subs& C R, apacking 3 5 annroximation algorithnfor a maximization prob-
of R'into a unit size square frani@, 1]  [0,1]isaposi-  jem 1 if on every instance of M algorithmA outputs

Email: Aleksei V. Fishkin [avi@mpi-sh.mpg.de], Olga a feasible solution with valué(l) > P ‘OPT(l), where

Gerber  [oge@informatik.uni-kiel.de], ~Klaus ~ Jansen OPT(l) is the optimum. The value gf > 1is called the
[ki@informatik.uni-kiel.de], Roberto  Solis-Oba [so- approximation raticor performance guaranteé poly-
lis@csd.uwo.ca]. nomial time approximation schen(@TAS) for a maxi-
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mization problenT] is a family of approximation algo-
rithms {A¢ }e~0 such thath¢ is a(1— €)-approximation

algorithm forl and its running time is polynomial in
n for any fixed valuee > 0. If the running time of each
A¢ is polynomial in the size of the instance and ifel

then{A¢}e>0 is called afully polynomial time approxi-
mation schem¢@-PTAS).

Related results. The 1-dimensional version of the
rectangle packing problem is equivalent to the knap-
sack problem: given a knapsack of capadiyand a

set of items with profits and sizes, pack a subset of

items of total size at mod® into the knapsack so that
the total profit of the packed items is maximized. It is
well-known that the knapsack problem is weakly NP-
hard [11], and it admits a FPTAS [17,20]. In contrast,
our problem is strongly NP-hard, and, hence, it admits
no FPTAS unless B NP.

For the 2-dimensional version of the problem, one can

see arelationship to the problem of packing squares into .

arectangle of minimum area [24,25]: Find the minimum
value x such that any set of squares of total area 1
can be packed into a rectangle of areaRegarding
lower bounds for this latter problem, there is just one
non-trivial result known [26]: The value ofis at least
2%‘/5 > 1.244. On the other hand, there are a number
of quite complicated algorithms yielding several upper
bounds for this problem. As it was shown in [23], any
set L of squares with side lengths at mastax can

be packed into a square of siae= Snax+ v/1— Smax
Later in [22], this result was extended by showing that
any setl of squares of total ared can be packed into

a rectangle of sizea; x ap, provided thata; > Smax,

A > Smax @NAS3, a5+ (81 — Smax) (82 — Smax) > V.. Hence,
the value ofx is upper bounded by 2. Further results
in this direction were obtained in [19], where it was
proven that any sdt of squares of total areé can be
packed into a rectangle of sizé2V x 2,V /+/3. Thus,
substitutingv = 1, the value ok is upper bounded by

\/gi 1.633. Finally, the result presented in [27] shows
that any set. of squares of total area 1 can be packed
into a rectangle whose area is less thasB1

Our problem is also related to the 2-dimensional bin
packing problem: Given a sketof rectangles of specified
size (width and height), pack them into the minimum
number of unit size square bins. The problem is strongly
NP-hard [21] and no approximation algorithm for it has
approximation ratio smaller than 2, unless-RP [10].
A long history of approximation results exists for this
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problem and its variants [4—6,29]. Very recently a num-
ber of asymptotic results have been obtained for it (i.e.
for the case when the optimum uses a large number of
bins). In [4] it was proven that the general version of
the problem does not admit an asymptotic PTAS, un-
less P= NP. However, there is an asymptotic PTAS if
all rectangles are actually squares [4,8]. Also, in [8] a
polynomial algorithm was presented which packs any
setL of rectangles into at mo$t°P(L) augmented bins

of size(1+¢) for anye > 0, whereN°P'(L) denotes the
minimum number of unit size bins required to pack the
rectangles irL.

A related problem is the two-dimensional knapsack
problem [9] in which a set of rectangular pieces needs
to be cut off a rectangular plate of widéhand heighb.
Each rectangular piedg has widtha;, heightb;, and
profit p;, and an arbitrary number of pieces of tyRe
can be cut from the plate. The goal is to cut the plate so
as to maximize the total profit of the pieces produced.

Finally, one can also see a relationship to strip pack-
ing [12]: Given a setlL of rectangles, it is required
to pack them into a vertical strif0,1] x [0, +) so
that the height of the packing is minimized. The strip
packing problem is strongly NP-hard since it includes
the classical bin packing problem as a special case.
Many strip packing ideas come from bin packing. The
“Bottom-Left” heuristic has asymptotic performance
ratio 2 when the rectangles are sorted by decreas-
ing widths [3]. In [7] several simple algorithms were
studied that place the rectangles on “shelves” using
one-dimensional bin-packing heuristics. It was shown
that the First-Fit shelf algorithm has asymptotic per-
formance ratio I when the rectangles are sorted by
decreasing height. The asymptotic performance ratio
was further reduced to/2 [31], then to 43 [13], and

to 5/4 [1]. Finally, in [18] it was shown that there ex-
ists an asymptotic FPTAS for the case when the sides
of all rectangles in the set are at most 1. For the case
of absolute performance ratio, the two currently best
algorithms have performance ratio 2 [28,32].

In contrast to all above mentioned problems, there
are very few results known for packing rectangles
into a rectangular region so as to maximize their total
profit. For a long time the only known result was an
asymptotic(4/3)-approximation algorithm for packing
squares with unit profits into a rectangle [2]. Only very
recently this algorithm for packing unit profit squares
was improved to a PTAS [15]. For packing rectangles
with profits, several approximation algorithms were pre-
sented in [16]. The best one is(é—s)-approximation
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algorithm, for any fixec > 0. packing, and scheduling problems. Our algorithm for
packing squares is based on a few simple ideas and,
Our results. Here we consider the so-called resource contrasting to recent algorithms for packing prob-
augmentation version of the rectangle packing problem, lems [4,8,16,18], it does not use linear programming.
that is, we allow the length of the unit square region Since the problem for packing squares is a special case
where the rectangles are to be packed to be increasedf that of packing rectangles, our algorithm is simpler
by some small value. Our main result is this: and more efficient that the algorithm in [8]. The algo-
Theorem 1. For any set R of n rectangles and any rithm deals separately with squares of different sizes.
accuracye > 0, there is an algorithm Wwhich finds a This idea has been used before to solve other problems
subset of R and its packing within an augmented unit [14,30]. We partition the squares into two sets formed

square frame|0, 1+ 3¢] x [0,1+ 3¢], with profit by large and small squares, respectively. The sets are
chosen so that onl®(1) large squares can be packed
W (R) > (1-¢)OPT, in the unit square frame. We augment the size of the

_ _ ) ) frame to 1+ ¢, and discretize the set of possible posi-
whereOPTis the maximum profit that can be obtained  tions for the large squares in a packing. This allows us

by packing any subset of R into a unit size square frame 1o enumerate all possible packings of the large squares.
[0,1] > [0,1]. The running time of Wis polynomial in - For each one of these packing we try to fill with small
n for fixede. squares the empty spaces left by the large squares.
We note that the algorithm of Correa and Kenyon [8] Tg do this we solve a knapsack problem to select the
for packing a set of rectangles into the minimum number gma|| squares to be packed, and use a variation of the
of square bins of size & can not be directly used  Next-Fit-Decreasing-Height heuristic to place them
to prove Theorem 1 becaugs the algorithm in [8]  (see Section 2.1.). Among all packings found we select
does not consider rectangles with profits, inflinthe  gne with the maximum profit, which must be at least
rectangle packing problem not all rectangles need to (1 _ ¢)OPT.
be p_acked. If we can fin_d a set of rectangle_s of near_ly For the problem of packing rectangles we need to
maximum profit and which can be packed into a unit yake a more complex partition, separating the rectan-
square frame, then we could use the algorithm in [8] to gles into four groupst,H,V, ands. Setst and$ con-
find such a packing. The problem of finding this set of tajn rectangles with, respectively, large and small widths
rectangles is not a simple one, though. We show how gnq heights. These are treated in a similar way as above.
to find in polynomial time a set of rectangles of nearly The other two setsH andV, contain wide and short
optimum profit that can be packed into a square frame (j e horizontal), and narrow and tall (i.e. vertical) rect
of size 1+e¢. This is enough to prove the theorem. angles, respectively. To pack these rectangles we first
We first address the special case of the problem when g nd their sizes and group them, so they form larger
all rectangles to be packed are squares. Presenting thgectangles. These grouped rectangles are then packed
algorithm for this simpler problem will help to under- by solving a fractional strip packing problem.
stand the solution for the more complex problem of "Eyen though the running times of both algorithms
packing rec_tangl_es. Specifically, we pr_esent an algo- Ac andW; are polynomial inn for fixed €, they are
rithm Ae which given a set of squarasfinds a sub-  exponential in 1. Therefore, our results are primarily
set ofL and its packing into the augmented unit square of theoretical importance.
0,1+ €] x [0, 1+ €] with profit In Section 2. we describe our algorithm for pack-
ing squares. In Section 3. we describe an algorithm for
Ae(L) = (1-€)OPT, packing a set of rectangles into an augmented square
frame and we give a proof for Theorem 1. Finally, in

where OPT is the maximum profit that can be achieved . . :
the last section we give some concluding remarks.

by packing any subset &fin the original unit square re-

gion[0,1] x [0,1]. The running time of is polynomial

in n for fixed . This result can be extended to the case 2. Algorithm for Packing Squares

of packingd-dimensional cubes into d-dimensional

cube of size k¢, ford > 2. In this section we present an algorithm for packing
Our algorithms combine several known approxi- squares into a unit size square frame so as to maximize

mation techniques used for knapsack problems, strip the total profit of the packed squares. More precisely,
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we are given a sé of n squares§ (i =1,...,n) with
side lengths € (0,1] and positive profitg; € Z... For

a subse) C Q, apackingof Q' into the unit square is
a positioning of the squar&g within the frame[0, 1] x
[0,1] such that they have disjoint interiors. The goal is
to find a subsety C Q and its packing into the unit
square, of maximum profiy s cy pi-

For a subset of squar€d C Q, we useprofit(Q’)
andarea(Q’) to denote the profity s pi, and area,
Yseq S-S, of Q. In addition, we use°Pt to denote
an optimal subset of) that can be packed in the unit
square]0,1] x [0,1]. So,

profit(Q°PY) = OPT andarea(Q°™) < 1.

Throughout the paper we also assume that(0,1/4)
and the value of e is integral.

2.1. The NFDH Heuristic

We consider first the following special case of the
square packing problem: given a sub&tC Q of
squares with side lengths at mast and a rectangle
[0,a] x [0,b] (a,b € [0,1]) such thatarea(Q') < ab,
pack the squares d@ into the augmented rectangle
[0,a+ €] x [0,b+€7.

To solve this problem, we sort the square€bhon-

g2 I N [
' e AT
el ] 1
hs X
b | NFDH(L)
hy
hy

a €2

Fig. 1. NFDH for small squares.

NFDH packs the squares & on sublevels in order of
non-increasing side lengths, the height of the packing is

H qh

Since the side of any square is at mesttheng? >
hy > hy > ... > hg > 0. Furthermore, the total width of
the squares on each sublevel (except, maybe, the last) is
at leasta and at mosta+€2. Then, the total area of the
squares on théh sublevel (=1,...,q—1) is at least
hi,1-a. Assume that the value &f is larger tharb+ £°.
Then, the area covered by squares would be at least

increasingly by side lengths. Then, we put the squares q-1 q

into the rectangl€0,a] x [0,b] by using the Next-Fit-
Decreasing-Height (NFDH) heuristic; this packs the

i; hii1-a=a- iZZhi

squares into a sequence of sublevels. The first sublevel = a[H — hy] > a[(b+ €2) — h;] by assumptiorH > b-&2
is the bottom of the rectangle. Each subsequent sublevel _ g 1 (£2 )] > ab= areaQ') since hy < &2

is defined by a horizontal line drawn at the top of the

largest square placed on the previous sublevel. In eachwhich gives a contradiction.

sublevel, squares are packed in a left-justified manner

until their total width is at leasa. At that moment, the

O

Collorary 3. Ifall squares in Q have side length at most

current s_ublevel is closed, a new sublevel_ is start_ed andg2 then there is an algorithm which finds a subset of
the packing proceeds as above. For an illustration S€€Q and its packing in the augmented squiliel + €] x

Fig. 1.

We will use the following simple result, which can
be directly derived from results in [7,22], but for com-
pleteness we include a proof.

Lemma 2. Let Q C Q be any subset of squares with
side lengths at most, ordered non-increasingly by side
lengths, and lef0,a] x [0,b] (a,b € [0,1]) be a rectan-
gle such that are@’) < ab. Then, the NFDH heuris-
tic outputs a packing of Qn the augmented rectangle
[0,a+€?) x [0,b+€7.

Proof. Let g be the number of sublevels. L&t be
the height of the first square on tith sublevel. Since

[0,1+€?] with profit at least(1—&)OPT. The running
time of the algorithm is polynomial in n arg’s.

Proof. By solving a knapsack problem we can find a
subset ofQ, whose total area is at most 1 and whose
profit is at least(1— €)OPT. By using NFDH we can
pack these squares into the augmented frabng +

€2] x [0,1+€7]. O

2.2. Partitioning the Squares

Now we consider the case of squares with arbitrary
sizes. We define the group? of squares with side
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lengths in(g%,1], and forj € Z, we define the group  the set consisting of all subsets of at mognA large

L) of squares with side lengths (54”1,341'], Then, squares fronL. Since there are at mostsquares in
_ . £, there is only a polynomial numbe®(n%/2%), of
U oLV =Q and LY NLU =0, for ¢ # j. sets iNFEASIBLE Note thatl N Q°Pt must belong to
FEASIBLE

We will use the following simple observation, which
also has been made by other researchers in different
contexts [4,8,14,30].

Lemma 4. There is a group (¥ with 0 < k < 1/e2 -1
such that its contribution to the optimum is

Packing large squares. Even if we could find the

optimal set of large squares, we would still need to
determine how to pack them in the square frame. We
enlarge the size of the unit square so that there is a

profit(Q°P'n L(k)) < £20PT. packing for the large squares such that the positions of
- ’ their lower left corners belong to a finite set of discrete
where @Ptis an optimal subset of squares. points.

Consider a packing of a subset of large squares in the
frame[0, 1] x [0, 1]. In this packing, increase the size of
16?1 each large square by a factor-E2. This increases the
OPT=— profit(Qopt) > Z) profit(QoptmL(j))' size of the enclosing frame by the same factor. Then,
£ without reducing the size of the frame, reduce the size
of every large square back to its original value. See

Proof. SinceL) NLU) = 0 for all ¢ + j, then

There must exist at least one grouf) with 0 < k < Fig. 2 for an illustration of this process.
1/€2 — 1 whose contribution to the profit of the optimal The side length of any large square is at le&as$o,
solution is at most the average contribution of thie?1 for each large square we now have an “induced space”
groups: where we can move the square up to a distagfee
vertically or horizontally, without increasing the area of
. [2}502*1 profit(QoPtn L)) the packing. Since?A > £3A, we can move all large
rofi i
profit(L® N QoPY) < 1/ squares such that each one of them has its lower left
2 corner in the following set
<e“OPT.
H CORNER={(x,Y)|x=¢- (£3A),y = p- (£2) and

We drop the squares in this grouf¥ of low profit 14+€2—A
from consideration. Then, an optimal packing @ t,p=1, 2""’T}'
L® has profit at leagtl — £2)OPT, i.e. this makes a loss
of at most a factor o&? in the optimum. We partition By discretizing the positions of the large squares we
the squares i@\ L into two groupsL = Ujsk,lLU') reduce to a constant the number of different packings

and$ = Uj2k+l|-(j)- The squares i, and$ are called for the large squares in a feasible set.
large and small, respectively.

Collorary 5. LetA= ¥, where k is as defined above. 2.4. Small Squares
The side length of any large square is larger than

and the side length of any small square is at me3at Let L' C L be any feasible set of large squares. The
Moreover, complemensf L', denotedCOM(L'), is the set of small
squares which is selected by a FPTAS [17] for the
profit(Q°P'N[L US]) > (1—&2)OPT. knapsack problem with accuraey, knapsack capac-
ity 1 —areaL’), and set of items; each itemS € 8
2.3. Large Squares has sizg(s )? and profitp;. We can prove the following
simple result.
We say that a subset of large squarefeasibleif it Lemma 6. For the optimal set @'N L of large squares,

can be packed into the unit square frame. The area of anyits complement COKQ°P'N L) has total area at most
large square is at leaa?, hence, there are at most/#?
large rectangles in any feasible set. EEASIBLEbe 1—areaL°™NL)
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B

MY

induced space

Fig. 2. Increasing and decreasing the sizes of the largaesjua

and profit at least
(1—€?)profit(Q°P'NS§).

Proof. The area ofQ°" is at most 1, henceQ°PtN'§

is a feasible solution for the instance of the knapsack
problem with knapsack capacity-larea(Q°P'n L) and

set of itemsS. So, the optimum profit of this instance is
at leastprofit(Q°P'N§) and the FPTAS finds a solution
of profit at least(1 — &2) profit(Q°P'N §). O

Placing small squares: The modified NFDH. As-
sume that we have a packing of some feasiblé€$¢&t £

of large squares in the augmented fraf@gel + £2] x
[0,1+¢€?]. By solving a knapsack problem, we can find
its complementCOM(L’). Our next task is to place
the small squares fro@OM(L') in the slightly larger
frame[0,1+¢] x [0,1+¢€].

large

RN
I I |
S
[}
=
«Q
[¢)

[TTTTTITTTT]
[ ] induced space

small

Fig. 3. Packing the small squares.

We pack the small squares in the empty space left
by the large squares using the modified NFDH heuristic

from [7]: Pack the squares on sublevels, creating sub-
levels in a bottom up manner and filling each one of
them from left to right. On each sublevel, if the next
small square overlaps with a large square, we place it
immediately after the right boundary of the large square.
For an illustration see Fig. 3. We cannot pack small
squares within the space occupied by the large squares,
but we can pack them inside the “induced space” around
the large squares. We can prove the following result.
Lemma 7. For any feasible set’ C L of large squares
packed in the augmented frarf@ 1+ €?] x [0, 1+ €7,

the modified NFDH heuristic outputs a packing Gf
and the small squares from its complement CQM

in the augmented fram®,1+ €] x [0,1+¢€].

Proof. Since we use the modified NFDH heuristic, in
each sublevel at most one small square can cross the
right border of the squarf®, 1+ ¢€?] x [0,1+€?]. Any
small square has side at ma@&n < €2, hence, the total
width of the packing is at mostl + €2) + €2 < 1 +¢,

fore < 1/4.

Now we show that the height of the packing cannot
be larger than % . We follow the ideas of Lemma 2.
Let H be the height of the packing. Let (i =1,...,q)
be the height of the first square on title sublevel. We
assume thaH is larger than & ¢ and derive a con-
tradiction. Consider one large square of side lergyth
and all sublevelg that intersect it. The maximum dis-
tance from the large square’s boundary to the closest
small square on a sublevekannot be larger thagfA
(otherwise, a small square could be added on that sub-
level). Hence, the maximum area not covered by small
squares around, and including this large square, is at
most (s + 2e%A)?.

Summing, over all large squares, we get that the area
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not covered by small squares is at most

Y (s+2en)%
sel’

Notice that our packing for small squares goes fur-
ther than point & €2 in width, andH = 3 h. Then,

as in Lemma 2, the area covered by the squares from

COM(L') is

q-1
AREA> Zlhi+1-(l+82)— Y (s+2¢'0)?
i= sel’!
=(H-h)-(1+&%) - 5 (s+2")
seL’
> (14887 — 5 (S +4se'A+ (2e%0)?)
seL’
sinceH > 1+¢ andh; < €*
>[1- 5 ]+2ef1-2e%A Y 5]
sel’ sel’

+ €1 — 4024 L)) (1)

Sinces > A ande < 1/4, then

Y s>1- % §>0.

seL’ seL’

1—26%A

From|L'| < 1/A? we also get
1—-40%4 0| > 1—4e* > 0.
Combining the above inequalities, we get

AREA>1- 5 & =areaCOM(L')).
sel’

This gives a contradiction. Hence, the value-bis at
most 1+ €. O

2.5. The Algorithm

ALGORITHM A¢:

Input: A set of square®), accuracy > 0.

Output: A packing of asubsetd@in [0,1+¢€] x [0,1+

€l.

(1) For eachk € {0,1...,1/€?}, form the groupL®
as described above.

(a) LetA:= &%

(b) SplitQ\L® into £ ands, the sets of large and
small squares with side lengths larger titan
and at most*A, respectively.

(c) Compute the seFEASIBLE containing all
subsets of. with at most ¥A? large squares.

(d) For every sef.’ € FEASIBLEfind its com-
plement$’ := COM(L’) by solving a knap-
sack problem. For each packing of in the
augmented squarf, 1+ €] x [0, 1+¢€?] such
that every large square i has its lower left
corner in a point o£ORNER

e Use the modified NFDH to pack the
small squares’ in the augmented unit
squaref0,1+ €] x [0,1+¢].

(2) Among all packings produced, select one with the
largest profit, and output it.
Theorem 8. For any set Q of n squares and any fixed
value € > 0, there exists an algorithm¢Awhich finds
a subset of Q and its packing into the augmented unit
square[0,1+ €] x [0,1+ €] with profit

Ae(Q) = (1-¢)OPT,

whereOPT is the maximum profit that can be achieved
by packing any subset of Q in the original unit square
region [0,1] x [0,1]. The running time of Ais

N/ n o1/
© (s—s (zo2) ) ’
wherea = ¢4/% |
Proof. By Lemma 7 algorithmA¢ produces a packing
in the augmented squali@ 1+ €| x [0, 1+ €]. Hence, we
only need to compute the profit of the packing chosen in
Step 2. The optimal set of large squa@$8'N L belongs
to FEASIBLE and hence, there exists a packing of these
squares in the augmented squird + €] x [0, 1+ €?]
such that each large square has its lower left corner in
a point of CORNER
Since algorithmA¢ checks all possible packings, it
will find one for Q°P'N L. Next, A¢ finds the comple-
mentCOM(Q°P'N L) and packs it using the modified
NFDH. The profit of the packing output by the algo-
rithm is

Ae(Q) > profit(Q°P'N L) + profit(COM(Q°P' N L))
> profit(Q°P'NL) + (1 - %) profit(Q°*'n§)
(by Lemma 6
> (1—€?)profit(Q°P'N[L US])
> (1-€%)[(1— €2)profit(QP!)
(from Corollary 5
> (1—¢)OPT.
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We know that any set of large squares from into the augmented cubic frame. Then, we can prove
FEASIBLE consists of at most(1/A%) squares. that the generalization of the modified NFDH heuristic

Hence, FEASIBLE can be computed iro(nl/Az) to d dimensions outputs a packing 6f and the small
time, and we need to do this/d? times (once for  cubes from its compleme@IOM(L') in the augmented

each value ok, see Step 1 of the algorithm). Since cubic frame of size ¥ &. Among all packings found
ICORNER = (1+5327A)2 < % the algorithm com- we select one with the maximum profit, which must be
f— 8 A 1

en at least(1— €)OPT.
=

the augmented squaf®, 1+ €?] x [0,1+€2]. The run-
ning time of the basic-FPTAS in [17] for the knapsack
problem isO(n?- 1/¢) (the different versions of FPTAS
can be found in [17]). The modified NFDH algorithm
runs inO(nlogn) time. Combining all together, we get
that the running time of the algorithm is

1/0? ) )
putes at mos( ) packings of large squares in

3. Algorithm for Packing Rectangles

Let R be a set oh rectanglesR; (i =1,...,n) with
widthsa; € (0,1], heightsb; € (0,1}, and profitsp; > 0.
The goal is to find a subs® C R, and a packing of
R within the frame[0,1] x [0,1] of maximum profit,

(nj_/AZ) 1 1/0? YReR Pi- N .
o( - <ﬁ> [(n*-1/g)) + (nIogn)]) . We partition the rectangleR into four sets:C,3(,V,
€ e and $. The rectangles inC have large widths and
heights, so onlyO(1) of them can be packed in the
unit square frame. The rectanglesJiti(V) have large
width (height). We round the sizes of these rectangles
(nz ( n )1/A2) in order to reduce the number of distinct widths and

Simplifying, we find that the running time of the overall
algorithm is bounded by

B2 heights. Then, we use enumeration and a fractional
strip-packing algorithm to select the best subsets of
H and V to include in our solution. The rectangles
in 8 have very small width and height, so as soon as
we have selected near-optimal subsets of rectangles
2.6. Packing d-Dimensional Cubes from LUK UV we add rectangles froré to the set
of rectangles to be packed in a greedy way. Once we
have selected the set of rectangles to be packed into the
frame, we use a slight modification of the algorithm of
Correa and Kenyon [8] to pack them.

For a subset of rectangl&$ C R, we useprofit(R)
to denote its profity g cr pi, andarea(R) to denote
its area,y g cr @b In addition, we usdPPt to denote
an optimal subset dR that can be packed into the unit
square framg0, 1] x [0,1]. So,

83

2
whereA = 4% 0

Our algorithm can be easily extended to the prob-
lem of packingd-dimensional cubes into a und-
dimensional cubic frame so as to maximize the total
profit of the cubes packed. As in the 2-dimensional
case, we partition the set of cubes into two getand
§ containing large and small cubes, respectively. Since
only a constant number of large cubes can be packed
into the frame, we can enumerate all feasible subsets
of L that can be packed in the augmented cubic frame
of size 1+ €? in polynomial time. We can prove the
following generalization of Lemma 2 (see also [8]).
Lemma 9. Let Q C Q be any subset of d-dimensional
cubes with side lengths at most, ordered by non- 3.1, Partitioning the Rectangles
increasing side lengths, and 12, a;] x [0,ap] x - -+ X _
[0,a4) (& € [0,1]) be a parallelepiped, such that We slightly modify the definition of the groupsﬁ”
areaQ) < a; x a... x ag. Then, the generaliza- given above to account for the fact that now the width
tion of the NFDH heuristic to d dimensions outputs and height of a rectangle might be different. We define
a packing of O in the augmented parallelepiped the groupL(© of rectanglesR € R with widths a; €
0,81 +€2] x [0, 82+ €2] x -+~ x [0,8q + €2]. (¢*,1] and/or heightd; € (¢4,1]. For j € Z,. we define

This lemma shows that the generalization of NFDH the groupL') of rectangles}; with either widthsa; €
to d dimensions can be used to pack the small cubes in (e# ™, &4] or heightsb; € (¢#"*,e¥]. One can see that
the empty spaces left by a packing of the large cubes each rectangle belongs to at most 2 groups.

profit(R°PY) = OPT andareaR°™) < 1.
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Lemma 10. Thereis a group (K with0 <k <2/e2—1
such that

profit(LK NROPY) < 2. OPT,

where RP! is the subset of rectangles selected by an
optimum solution.

Proof. The proof is very similar to the proof of
Lemma 4 O

We again drop the rectangles in grouff), as de-
scribed in Lemma 10, from consideration. Then, an op-
timal packing forROP'\ LK must have profit at least
(1—¢€2)OPT. However, now we partition the rectangles
of Rinto four groups according to their side lengths, as

follows. LetA = 4.

L={R | a>Aandb >A}
$={R | a <&’Aandb <&*A}
H={R | a >Aandb <e&*A}
V={R | & <&’Aandb > A}

Lemma 11. For 0 < € < 1/2 the subset R\ L of
rectangles can be packed within the fraf@el + €] x
[0,1+ €] in such a way that

each rectangle Re HUL is positioned so that its
lower left corner is at an x-coordinate that is a mul-
tiple of €2A,

each rectangle Re VUL is positioned so that its
lower left corner is at a y-coordinate that is a multiple
of €24,

Furthermore, any width ja> A or height h > A can
be rounded up to the nearest multiple &7 without
affecting the feasibility of the packing, i.e. (i) for each
R € L, both, a and h can be rounded up, (ii) for each
R € H, only g can be rounded, and (iii) foreach R V,
only b can be rounded.

Proof. Increase the size of every rectangl&in HUV

by a factor 14+ €. These enlarged rectangles can be
packed in a frame of sizef&. Now shrink the rectan-
gles back to their original sizes to create the “induced
spaces” as before. Shift each rectangle inside its in-
duced space so that it is positioned as indicated in the
lemma. Note that each rectangle needs to be shifted ver-
tically and/or horizontally at most a distane®\. Fi-
nally, round each side length larger thaio the nearest
multiple of £2A. Since each rectangle can be shifted in-
side its induced space vertically or horizontally by a dis-
tanceeA, and since &A < A forall 0 < £ < 1/2, then

the enlarged rectangles fit in a frame of size 4 [

Selecting the large rectangles. As before, we say that

a subset of large rectangles is feasible if they can be
packed in the unit frame. We define the B&ASIBLE
consisting of all subsets of at most/? large rectan-
gles. Observe that the optimal set of large rectangles
ROPt ¢ FEASIBLE As we showed abovEEASIBLE
can be computed i®(nY/2) time.

Selecting the horizontal rectangles. Recall that for
each rectanglB € J, its width,g; € (A, 1] was rounded
up to a multiple ofe?A. Hence, there are at most=
1/(€2A) distinct widths,ay, ap, ..., aq, in H. We use
H(aq) to denote the subset 6f consisting of all rect-
angles with widthay. Let 3’ C 3. We define thepro-
file of 3" as ana-tuple (W, h,, ... hy) such that each
entryh € (0,1] (q=1,...,a) is the total height of the
rectangles irf’ N H(aq).

Consider the profiléh;, hs, ... h%) of HNRP. Note
that if each valué! is rounded up to the nearest multiple
of €/a, this mightincrease the height of the frame where
the rectangles are packed by at maét/a) = €. The
advantage of doing this, is that the number of possible
values for each entry of the profile 6 N R°P is only
constant, i.ea/g, and, the total number of profiles is
also constaniy®/e.

By trying all possible profiles with entries that are
multiples ofe/a we ensure to find one that is identical
to the rounded profile fak N RCP'. However, the profile
itself does not yield the set of rectanglesditin ROP.
Fortunately, we do not need to find this set, since (from
the algorithms in [8] it can be shown that) any §ét
of rectangles with the same rounded profilg-as R°Pt
can be packed along with NR°Pt in a frame of height
1+ ¢ by solving a fractional strip-packing problem:

e Assume that we know an optimal set of large rect-
anglesC NRCPt and a packing for it as described in
Lemma 11. This assumption can be made since the
setFEASIBLEhas polynomial size and for each set
in FEASIBLEthere is a constant number of possi-
ble packings with the structure defined in Lemma 11.
Thus, we cantry all packing for all setsiEASIBLE

in polynomial time, and one of them has to be iden-
tical to the packing of2 NR°P, Assume also that we
know the profile(h;, hs,... h§) of HNROP,

For this packing of. NRCP! trace a grid of size/a
over the entire square frame. Each square of this grid
not occupied by a large rectangle is labelled either
“h” or “sv”. Squares labelled “h” will be used to pack
rectangles froni{ and squares labelled “sv” will be
used to pack rectangles frotiu 8. Try all labellings
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for the grid’s squares (there is only a constant num-
ber of them); one of them must be identical to the
labelling induced by an optimum packing fBfP.
Group horizontally-adjacentgrid squares labelled “h”
into strips.

The fractional strip packing problem is to fractionally
pack rectangles of widiy and total heighlt, 1 <i <

a, into these strips. In this fractional packing problem

arectangle can only be splitinto rectangles of smaller

height and the same width as the original rectangle.
Let H” be the set of rectangles (fractionally) packed as
described above. To convert this fractional packing into
an integer one, the height of the strips might need to be
slightly increased. The total increase in the height of the
packing is at mosta/g)e*A = ¢. (For a more detailed
explanation, the reader is referred to [8].)

Thus, we just need to find a set of rectangles ftdm
with nearly-maximum profit and with the same rounded
profile asH NRPL, We say that a subsét’ C I is
feasibleif
each entryh € (0,1] (q=1,...,a) in the profile of
H' is a multiple ofe/a, and
each subseH’' NH(aq) (q=1,...,0a) is a(l—¢g)-
approximate solution of an instance of the knapsack
problem wherdﬂa is the knapsack’s capacity and each
rectangleR; € H(aq) is an item of sizéy and profit
Pi.

Lemma 12. In O(n?-1/¢) time we can find the set
FEASIBLE consisting of all feasible subsets &f.

Proof. There areD(1) possible profiles. For each entry
in a profile, in order to find g1 — €)-solution for the
corresponding knapsack problem, we can use the FP-
TAS of [17] with O(n? - 1/€) running time. O

Selecting the vertical rectangles. We use similar
ideas as above to defin@ofiles and to find the set
FEASIBLE, consisting of allfeasible subsets ofV.
Note that a sef?” C V of rectangles with the same
rounded profile a® NR°P! can be packed, along with
LNRPP and a setH” C H as described above, in a
square frame of size-t . To see this, consider a grid
as described above and mark in this grid the squares
occupied by rectangles fro N RCP! in an optimum
solution. The rectangles i’ can be placed in these
marked grid squares by solving a fractional strip pack-
ing problem as described above. This time the width of
the frame needs to be increased to 4

Selecting the small rectangles. Assume that
we are given feasible subsets’ € FEASIBLE

Fishkin et al. — On Packing Rectangles

H' € FEASIBLE;, V' € FEASIBLE, such that
area( L' UH'UV') < (1+2¢)? ( Recall that the round-
ing involved in packing the rectangles IHUV in-
creases the size of the frame of Lemma 11 #0Zk). A
subse8’ C § is feasible for the selectiof’, 7', V', if 8’
is a(1—¢)-approximate solution for the instance of the
knapsack problem whe(@ + 2¢)? — area( L' UH' UV')

is the knapsack’s capacity, and each rectafgle Sis
an item of sizeajb; and profitp;.

Proposition 13. Given setsl’ C FEASIBLEH' C
FEASIBLE¢, andV’ C FIASIBLE), a feasible subset
8’ of § can be found in @?-1/¢) time.

3.2. The Algorithm

Algorithm W:

INPUT: A set of rectangle®, accuracy > 0.
OuTPUT: A packing of a subset d® within [0, 1+ 3¢] x
[0,1+3¢].

(1) For eachk € {0,1...,2/¢? — 1} form the group
LK of rectanglesk, € R as described above and
perform Steps 2 and 3.

(2) Leta =1/(€%D).

(a) PartitionR\ L™ into setst,8,H, andV as
described above.

(b) Round the sizes of the rectangleés) H UV
as indicated in Lemma 11.

(c) Compute the seFEASIBLE containing all
subsets ofL with at most YA? rectangles.

(d) Compute the setFEASIBLE; contain-
ing all feasible subsets of}{ with profiles
(hy,ho,....hq) where each entryhg < 1
(9=1,...,a) is a multiple ofe/a.

(e) Compute the setFEASIBLE, contain-
ing all feasible subsets ofV with profiles
(V1,v2,...,Vq) where each entryvg < 1
(g=1,...,a) is a multiple ofe/a.

(3) Foreachset’ € FEASIBLE H' € FEASIBLEq,
andV’ € FEASIBLE, do:

(a) Try all possible packings fat’ in the frame
[0,1+¢€] x [0,1+¢], positioning the rectangles
as indicated in Lemma 11.

For each packing of’ in the frame of size
1+ 2¢, splitthe empty space with a grid of size
g/a. Try all possible labellings for the grid’s
squares in which a square is labelled either
of /y. For each labelling, try to pack the rect-
angles frontH’ into the grid squares labelled
l5¢, and try to packV’ into the squares la-
belled/y by solving a fractional strip-packing

(b)
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problem as described above. By Lemma 14 there exist a selection of feasi-
(c) If there is a packing fol’ UH' UV’ in the ble subsetsL’ € FEASIBLEH' € FEASIBLE,
frame of size 1-2¢, find a subse$’ C $ which V' ¢ FEASIBLE,, and$8’ C 8, such that
is feasiblefor L', H' andV'.
(d) Increase the size of the frame [tb+ 3g] x
[1+ 3¢] and use the NFDH algorithm to pack

profit(L'UH UV US) > (1—-¢€)OPT,

A and such that algorithi outputs a packing of’ U
the r/ecta?gle\;s within the empty gaps left 50,y g within an augmented square frari@el +
by L/UFH U,V : ) 3¢] x [0,1+ 3¢]. Since algorithnW\; tries all feasible sets

(4) Among all packings computed in Step 3, output i, e AS|BLE FEASIBLE, andFEASIBLE,, and all
one having maximum profit. packings for themy\; must find the required solution.
All feasible subset$EASIBLE FEASIBLE, and

3.3. Proof of Theorem 1 FEASIBLE), can be found inO(n?-1/¢) time. Step

3(b) of algorithmW; can be performed by using the

algorithm for strip-packing described in [8]. This algo-

rithm also runs in time polynomial in. Furthermore,
there is only a constant number of possible packings for
any set of large rectangles frdrE ASIBLE Hence, the
overall running time of algorithm\; is polynomial in
n for fixed .

Lemma 14. There exists a selection of feasi-
ble subsets L’ ¢ FEASIBLEH' € FEASIBLE,,
V' ¢ FEASIBLE, and8’ C 8, such that
e profit(L’UH' UV US') > (1—¢)OPT,
e algorithm W outputs a packing of2’ UH' UV U
8’ within the augmented square fran@ 1+ 3¢] x
[0,1+4 3¢l

Proof. Choosel’ = LNROP. Let H' C H andV' C 'V
be sets with the same rounded profiles Jds) R°P

andVNR°P' and profits at leastl — ¢)profitf(H N R°P) An interesting open problem is that of finding a set
and (1 —e)profit(V NRP) respectively. Le§’ C S be i R of rectangles with profit at leaél — £)OPT and
a(l —_s)—approximate sol_ution ofzthe knapsack prob- p_acking for them in the unit square regif®1] x

Ielm with .knapsack capaqt(;&—i-Zs) — area@’ UH'U [0,1] without augmentation. Natural extensions of our
V) and_|te|/”nsRi € 8§ of size ah antd profitpi. Note  gigorithm (like removing one of the large rectangles
that profit(s’) > (1— g)profit(s N R°P) and, therefore, 15 accommodate those rectangles that in our algorithm
profit(L’U I UV ') = (1 —€)profit(RP). would overflow the boundaries of the unit square region,

Since R°"" can b? p;’;lcked Into a unit sizé SQUare s, requiring the extension in the size of the region)
frame and the sets’,J(", and V" are rounded-up sets 44 not work. We conjecture that this more complex

- : - t t
with pr’gflts at least the profits d®°"'NL, RPNI,  proplem can be solved in polynomial time, but new
and R°P'NV, then, by Lemma 11 and the discussion techniques seem to be needed.

in Section 3.1. about the selectionEASIBLE and

FEASIBLE, they can be packed into a square frame

of size[0,1+ 2¢] x [0,1+ 2¢]. The small rectangles in  Acknowledgements

8’ have total ared1+ 2¢)? —area(L’ U’ UV') and,

thus, the NFDH algorithm can pack them in the empty W& thank an anonymous referee for valuable com-
gaps left by the other rectangles if we increase the size MeNts that improved the legibility of the paper and for
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