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Abstract

Most real optimization problems often involve multiple objectives to optimize. In single-objective optimization there
exists a global optimum, while in the multi-objective case no optimal solution is clearly defined but rather a set of
solutions, so called Pareto-optimal set. Thus, the goal of multi-objective strategies is to obtain an approximation to
this set. However, the majority of this kind of problem cannot be solved exactly as they have very large and highly
complex search spaces. In recent years, meta-heuristics have become important tools for solving multi-objective problems
encountered in industry as well as in the theoretical field. Thus far, there exist many comparative studies about the
performance of evolutionary algorithms, but are few the papers dealing with non-evolutionary strategies. The goal of
this paper is to analyze the performance of both paradigms ina realistic problem. In concrete, we have adapted five
multi-objective meta-heuristics, based on Simulated Annealing, Tabu Search, and Evolutionary Methods, to solve the
Network Partitioning Problem.

Key words: Multi-objective Meta-heuristics, Simulated Annealing, Tabu Search, Evolutionary Computation, Network
Partitioning.

1. Introduction

M ulti-objective optimization problems (MOP) re-
quire taking into account multiple objectives at

the same time. In most cases, these objectives are in
conflict, i.e., the improvement of one objective implies
the deterioration of others. Usually, MOPs are solved
with conventional single-objective methods by using
scalarizing sum functions. Recently, the Pareto optimal-
ity concept [1] has been used by many authors in the
design of multi-objective meta-heuristics (MOMHs) to
solve MOPs. The majority of these papers are based on
extending evolutionary algorithms to treat several objec-
tives at the same time. However, other non-evolutionary
based methods, like hill climbing, simulated annealing,
tabu search, etc., have also been successfully presented.
Thus far, the number of comparative studies in real op-
timization problems is very limited.

With the purpose of developing an adequate com-
parison, we propose to solve the network partitioning

Email: C. Gil [cgil@ace.ual.es], R. Baños
[rbanos@ace.ual.es], M.G. Montoya [mari@ace.ual.es], J.
Gómez [jgomez@ual.es].

problem. This problem, included in the category of NP-
complete [2], consists of dividing the nodes of a network
into several balanced sub-domains, such that the num-
ber of paths connecting nodes of different sub-domains
is minimized. Thus far, almost none of the papers re-
lated to this problem consider the simultaneous opti-
mization of both objectives, but it is usual to consider
one of them as a constraint. This multi-objective per-
spective is treated here.

Section 2 describes the five MOMHs we have adapted
to solve the network partitioning problem. Section 3
formally describes how represent networks by graphs,
and how to partition them by using the graph partition-
ing model. Section 4 presents the results obtained by
them in several test instances, and the metrics used in
the comparison. Finally, Section 5 contains the conclu-
sions drawn by this paper.

2. Solving MOPs using Multi-Objective Meta-
Heuristics

Given a MOP withK ≥ 2 objectives to optimize,
instead of giving a scalar value to the objective func-
tion f1...K(s), a partial order is defined according to

c© 2006 Preeminent Academic Facets Inc., Canada. Online version: http://www.facets.ca/AOR/AOR.htm. All rights reserved.
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Pareto-dominance relations [1]. A solutions1 is said to
dominateanothers2 (s1 ≺ s2) whens1 is better than
s2 in at least one objective, and not worse in the others.
Two solutions are calledindifferent or incomparable
(s1 ∼ s2) if neithers1 dominatess2, nor s2 dominates
s1. The set ofnon-dominatedsolutions (ND) constitute
the so-called Pareto optimal set, which usually contains
not one solution, but several. As all the objectives are
equally important, the aim of multi-objective optimiza-
tion is to find this entire set (or a representative sample
of it). In the literature there are comparative studies of
different issues of MOMHs [3,4]. In what follows we
describe the methods we have implemented in this pa-
per to solve the network partitioning problem.

2.1. Serafini’s Multi-Objective Simulated Annealing
(SMOSA)

One of the earliest MOLSAs wasSerafini’s Multi-
Objective Simulated Annealing (SMOSA)[5]. In single
objective Simulated Annealing (SA) [6], better neigh-
boring solutions are always accepted, whereas worsen-
ing solutions are accepted with a certain probability,
which is dependent on a parameter, called temperature.
In a multi-objective context a new solution (s∗) is ac-
cepted if it dominatesthe current one (s); and is ac-
cepted with a certain probability, if it isdominatedby
s. This probability is usually determined by including
the degree of improvement/deterioration in the qual-
ity of the solution, and the temperature variable in the
Metropolis function [7]. However, there is a special
case to keep in mind when both solutions areindifferent
(s ∼ s∗). Serafini [5] suggested several transition prob-
abilities for this case, obtaining good results. In theory,
SA makes possible to reach global optimality.

2.2. Ulungu’s Multi-Objective Simulated Annealing
(UMOSA)

Another important SA-based MOMH isUlungu’s
Multi-Objective Simulated Annealing (UMOSA)[8].
Unlike SMOSA, where weights in the scalarizing func-
tion can be dynamically adapted at runtime, UMOSA
executes separate runs by using fixed weights (see pa-
rameterλ in formula (1)). Thus, each run of UMOSA
generates a set ofnon-dominatedsolutions. After the
execution of the algorithm with different weights for
each objective, all thenon-dominatedsets are joined
together in a global set. The benefit of this method is
obtained when the number of executions with different

combinations of weights is large enough. However, the
runtime of UMOSA increases according to the number
of separate runs. The test problem used to evaluate
UMOSA was a multi-objective formulation of the
knapsack problem. In the conclusions [8], Ulungu sug-
gested future research in order to compare their strategy
versus others like [9], question treated in this paper.

c(s) = λ1 · f1(s) + λ2 · f2(s) + · · ·+ λK · fK(s) (1)

2.3. Czyzak’s Pareto Simulated Annealing (PSA)

A population-basedversion of SMOSA isPareto Sim-
ulated Annealing (PSA)[9]. PSA is based on accepting
neighboring solutions with a certain probability, which,
like SMOSA and UMOSA, depends on the temperature
parameter. However, while SMOSA and UMOSA use
only one solution in the optimization process, PSA uses
several. In PSA, each solution dynamically modifies its
weights in the objective function, which is an attempt
to assure adequate dispersion of thenon-dominatedso-
lutions. Results obtained by PSA are compared with
SMOSA in the multi-objective knapsack problem (see
[9]). However, no comparison is provided considering
other meta-heuristics.

2.4. Hansen’s Multi-Objective Tabu Search (MOTS)

Tabu Search (TS) [10] is an optimization method
which repeatedly moves from the current solution to
the best in the neighborhood, while trying to avoid be-
ing trapped in a local optimum by maintaining a list of
tabu movements. An extension of TS for MOO isMulti-
Objective Tabu Search (MOTS)[13]. It works with a set
of current solutions which are simultaneously advanced
towards thenon-dominatedfront (like PSA). These so-
lutions are upgraded using a TS acceptance criterion.
In MOTS, the weighting values are adaptively modi-
fied during the search process. The number of solutions
changes according to the dominance rank among solu-
tions. Thus, if the rank is high, the solutions dominate
each other in the objective space, and then the number
of solutions is decreased. However, a low average rank
indicates that the non-dominated solutions are well-
spread. Experimental analysis of MOTS [11] is focused
to evaluate the variation in the quality of the solutions
according to the length of the tabu list. Nevertheless,
this strategy is not compared with other methods.
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Fig. 1. (a) Cellular Network, (b) Partition in the nodal graph,
(c) Partition in the cellular network.

2.5. Knowles’ Pareto Archived Evolution Strategy
(PAES)

Previous methods are based in local search. How-
ever, it seems to be interesting the evaluation of the
performance of evolutionary methods. In concrete, last
MOMH we have adapted to solve the Network Parti-
tioning Problem is the Pareto Archived Evolution Strat-
egy (PAES) [12], proposed by Knowles et al.. PAES,
also called (1+1)PAES, is a Multi-Objective Evolu-
tionary Algorithm (MOEA) that uses a single solution
during the optimization process. In PAES one parent
generates by mutation one offspring. The offspring
is compared with the parent, and according to dom-
inance relations, the parent or the offspring continue
the search. Knowles [12] proposed the Adaptive Grid
Archiving (AGA), which maintains the diversity of
the solutions in the external archive of non-dominated
solutions (ND). The crowding procedure used in AGA
works by dividing up the objective space occupied by
the individuals of the population into different rectan-
gular areas, called grid regions. The number of grid
regions, which is constant during the search process,
is set according to a parameter calleddiv. However, as
the location of the solutions changes during the search
process, the space, the location, and size of the grid
regions in the objective space also vary in runtime.
The goal is to obtain a set of non-dominated solutions
(ND) so that the number of solutions in the same grid
is minimized, which indicates that ND is well-spread.
PAES also tries to expand the non-dominated solutions
in order to build a extensive set.

3. Graph Partitioning as Tool to Partitioning Net-
works

Since the first heuristic method was proposed to par-
titioning graph/networks [12], the interest for this prob-

lem has increased much. In fact, the number of works
related to the partitioning of multiple types of networks,
like heterogeneous communication networks [14], Cel-
lular networks [15], Wireless and Mobile networks [16],
VLSI networks [17], Neural networks [18], Circuits
[19], etc., is very extensive.
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Fig. 2. (a) LAN Network, (b) two partitions, (c) representation
in the solution space.

It is known that graphs model a large variety of real
problems [20]. One of them is the Graph Partitioning
Problem (GPP). The translation of networks to graphs
is direct: in terms of network partitioning, vertices in
the graph represent nodes in the network, while edges
correspond to connections among nodes. An intuitive
application of partitioning appears in cellular networks.
Figure 1(a) shows a small cellular network and its asso-
ciated graph. The dotted lines connect the cells with a
common face. Figure 1(b), shows a possible partition of
the associated graph, whose translation to the cellular
network is represented in Figure 1(c). Figure 2 shows
as other network is modeled by graphs.

Definition 1. Given an undirected graph,G = (V, E),
where V is the set of vertices,|V | = n, and E
is the set of edges which determines the connec-
tivity of V . The GPP consists of dividingV into
SG balanced sub-graphs,V1, V2, . . . , VSG, such that
Vi ∩ Vj = φ, ∀i 6= j; and

∑SG

sg=1 |Vsg| = |V |. The im-
balance degree is defined by the maximum sub-graph
weight,M = max(|Vsg |), ∀sg ∈ [1, SG]. In the single-
objective formulation of the GPP, the aim is minimize
the communications, while the imbalance defined by
M is considered a constraint. Thus, if the maximum
allowed imbalance isx%, the partition must verify that
M ≤ ((n/SG) ∗ ((100 + x)/100)).

Most strategies proposed [21] to solve the single-
objective GPP use the multilevel paradigm [22] in com-
bination with another optimization technique [23,?].
The main handicap of this model is the high dependency
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on the imbalance constraint. In the example drawn in
Figure 2(c) solutionsp1 andp2 are indifferent, reason
why both are returned to be used according to the practi-
cal application. If, for example, we plan to assign a pow-
erful server to each sub-network and the communica-
tions are very slow (little bandwidth, high latency, etc),
minimization of communications are more important
than imbalance. For this situation, partitionp2 would be
chosen. On the contrary, if the servers are not so pow-
erful and the network quality is high, it would be more
advisable to minimize the imbalance, i.e., partitionp1
is the most suitable. Thus, this multi-objective formu-
lation allows to obtain a collection of solutions which
are very useful in the decision making process.

Some authors have proposed multi-objective formu-
lations of the GPP [25,26]. A typical approach is based
on creating a mathematical function as the weighted
sum of the objective functions [25]. In this scheme, the
choice of the weighting values is used to determine the
relative importance of the objectives. The main weak-
ness of this scheme is the impossibility of obtaining the
Pareto-optimal solutions, due to it is extremely difficult
to assign adequate weights to the objectives. An inter-
esting method to overcome this disadvantage is to use
the Pareto-dominance concept [1], which has been suc-
cessfully applied to a large variety of MOPs. In the GPP
problem, we can reference the work of Rummler and
Apetrei [26], where authors adapted a MOEA (SPEA
[27]) to solve the GPP. They tested the performance
of his adaptation, obtaining unsatisfactory results. They
remarked that the main reason for these disappointing
results is the redundancy in the representation of the
solutions for this problem, which results in the evolu-
tionary operators, mainly the crossover operator, not to
work as well as in other problems. Their experimental
results indicated that the use of a local search procedure
allows for improvement in the quality of the solutions in
comparison with the SPEA adaptation. This is the main
reason why we use the methods described in Section
2. In concrete, previous studies [19] have demonstrated
the good behavior of SA and TS in the single-objective
formulation of this problem. Further, as PAES works
with a single solution, crossover operator is not applied,
avoiding the problems that happened in the adaptation
proposed in [26].

4. Experimental Results

The executions have been performed in a 2.4 GHz
processor with 512 Mbytes of RAM memory. The pro-

Table 1

graph |V| |E| min max avg

add20 2395 7462 1 123 6.23
3elt 4720 13722 3 9 5.81
uk 4824 6837 1 3 2.83
add32 4960 9462 1 31 3.82
crack 10240 30380 3 9 5.93
wing nodal 10937 75488 5 28 13.80

Test graphs.

grams were implemented in standard C using thegcc-
3.3.2compiler of Linux Fedora Core 1. As our goal is
to evaluate the quality of the MOMHs described above
in the partitioning of large networks, we have used a
set of test graphs. These graphs, that belong to a pub-
lic domain set [21] frequently used to compare single-
objective graph partitioning algorithms, have also been
used to evaluate network partitioning algorithms [14].
Table 1 details the vertices degrees (maximum, mini-
mum, and average). All them have thousands of vertices
(nodes) and edges (connections among nodes).

4.1. Parameter Setting

In what follows we describe the parameter configu-
ration we have used in the experiments. The initial so-
lutions are obtained by using the GGA strategy [28].
This procedure starts from a randomly selected vertex,
which is then assigned to the first sub-graph, as their ad-
jacent vertices. This recursive process is repeated until
this sub-graph reachesn/SG vertices. From this point,
the following visited vertices are assigned to a new sub-
graph. When all the vertices are assigned to a certain
sub-graph, the procedure finishes. As the position of
the initial vertex determines the structure of the primary
partition, its random selection offers a very useful di-
versity.

As we commented previously, SMOSA, UMOSA,
and PAES use a single solution to perform the search
process, while PSA and MOTS use a set of solutions
(notice that this value is fixed in PSA, and variable in
MOTS). In both cases, the population size has been set
to |P | = 100. The maximum size of the non-dominated
set has also been set to|ND| = 100. The initial temper-
ature (Ti), and cooling rate (Tcr) for SMOSA, UMOSA,
and PSA areTi = 100, Tcr = 0.995. In UMOSA, the
number of runs with different weighting values has been
set to 10. Weights in function (1) have been assigned
as we detail now:λcommunications = 1.0 for the first
execution,λcommunications = 0.9 in the second one,
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Table 2

SMOSA UMOSA PSA MOTS PAES
add20 3elt 0.000 0.000 0.142 0.545 0.000 0.571 0.636 0.400

SMOSA uk add32 0.600 0.625 0.000 0.857 0.571 0.250 0.000 0.900
crack wingnodal 0.000 0.000 0.000 0.000 0.200 0.714 0.000 1.000
1.000 0.400 1.000 0.181 0.000 0.857 1.000 1.000

UMOSA 0.250 0.286 0.111 0.000 0.517 0.500 0.500 0.900
0.875 1.000 0.875 1.000 0.800 1.000 1.000 1.000
0.556 0.400 0.000 0.000 0.000 0.714 1.000 0.800

PSA 1.000 0.000 0.900 0.500 0.857 0.000 1.000 0.700
0.875 0.957 0.000 0.000 0.600 0.714 0.000 1.000
0.222 0.200 0.429 0.500 0.143 0.181 0.818 0.200

MOTS 0.250 0.286 0.300 0.125 0.111 0.000 0.500 0.300
0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.111 0.000 0.000 0.000 0.000 0.000 0.000 0.571

PAES 0.000 0.000 0.200 0.000 0.000 0.000 0.571 0.000
0.375 0.000 0.000 0.000 0.000 0.000 0.600 0.571

Results using MetricC in each test graph.

downing toλcommunications = 0.0 in the last run. Note
thatλimb = 1.0 − λcommunications. The number of it-
erations of each run has been set to 1838. This value
corresponds to the number of iterations needed by the
SA-based MOMHs to fall belowt = 0.01 with these an-
nealing parameters. PAES also executes the same num-
ber of iterations. The results here shown correspond to
the partitioning of the test graphs intoSG = 16 sub-
graphs. With the purpose of comparing the quality of
these MOMHs with single-objective strategies [21], we
have considered an additional constraint which consists
of discarding those solutions with an imbalance greater
than 5% (i.e.,M ≤ 1.05).

4.2. Performance Measures

The results of computational experiments will be
compared using theS andC metrics proposed in [27].
In what follows we describe them:

Definition 2. Coverage of two sets(C). Let X , X ′

be two subsets of solutions. The functionC maps the
ordered pair (X, X ′) to the interval [0,1]. The value
C(X, X ′) = 1 means that all points inX ′ are domi-
natedby or indifferent to the points ofX . Figure 3(a)
shows that the setX covers most of the solutions ofX ′.

C(X, X ′)←
|a′ ∈ X ′; ∃a ∈ X : a � a′|

|X ′|
(2)

Definition 3. Average size of the space covered(S).
Given a set of solutions,X = (x1, x2, . . . , xn), the
functionS(X) returns the average volume enclosed by

the union of the polytopesp1, pK , where eachpi is
formed by the intersections of the following hyperplanes
arising out ofxi, along with the axes: for each axis in
the objective space, there is a perpendicular hyperplane
passing through the point(f1(xi), . . . , fK(xi)). In the
bi-dimensional case, eachpi represents a rectangle de-
fined by the points (0, 0) and(f1, f2). Thus, the smaller
this average volume is, the better the approximation to
the (unknown) Pareto-optimal front.

S(X)←

∑|X|
i=1(

∏|K|
k=1

fk(xi)
max(fk(X)) )

|ND|
(3)

Let us consider the non-dominated solutions of set
X , in Figure 3(b). Each solutionxi encloses an area
of size [communications(xi)* imbalance(xi)]. Metric S
determines the quality of the non-dominated sets by pre-
ferring the smaller enclosed area. As the non-dominated
sets usually have a different number of solutions, it is
necessary to normalize this value to obtain an aver-
age enclosed area (see function (3)). In Figure 3(b) it
is clear that the average area covered byX is smaller
than the area ofX ′, which leads us to think thatX
is closer to the (unknown) Pareto-optimal front than
X ′. It is worth noting that, as both objectives (com-
municationsand imbalance) have different scales, it
is necessary to define the work area. For this reason,
we establish a maximumimbalanceM ≤ 1.05 (see
Definition 1). This value also allows us to compare
the multi-objective approaches analyzed here with the
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Table 3

graph MOMH S Snorm. communications communicationsnorm.

SMOSA 0.329 2.511 2525 1.137
UMOSA 0.189 1.443 2221 1.000

add20 PSA 0.371 2.832 2403 1.082
MOTS 0.131 1.000 3964 1.785
PAES 0.438 3.344 2773 1.249
SMOSA 0.056 8.000 741 1.000
UMOSA 0.007 1.000 922 1.244

3elt PSA 0.069 9.857 764 1.031
MOTS 0.279 39.857 2989 4.034
PAES 0.118 16.857 1945 2.625
SMOSA 0.078 1.279 249 1.078
UMOSA 0.177 2.901 410 1.775

uk PSA 0.061 1.000 231 1.000
MOTS 0.211 3.459 697 3.017
PAES 0.145 2.377 627 2.714
SMOSA 0.034 1.062 191 1.000
UMOSA 0.090 2.813 440 2.304

add32 PSA 0.032 1.000 309 1.618
MOTS 0.092 2.706 5538 28.994
PAES 0.352 11.000 1125 5.890
SMOSA 0.139 8.176 2670 1.743
UMOSA 0.017 1.000 1532 1.000

crack PSA 0.041 2.412 1761 1.149
MOTS 0.047 2.765 3332 2.175
PAES 0.039 2.294 3000 1.958
SMOSA 0.151 12.583 16956 1.601
UMOSA 0.012 1.000 10588 1.000

wing nodal PSA 0.048 4.000 15745 1.487
MOTS 0.085 7.083 34347 3.244
PAES 0.045 3.750 23890 2.256
SMOSA - 4.122 - 1.026
UMOSA - 1.000 - 1.130

average PSA - 2.587 - 1.000
MOTS - 6.850 - 5.871
PAES - 4.859 - 2.266

Comparing MOMHs: SMOSA, UMOSA, PSA, MOTS, and PAES

Table 4

SMOSA UMOSA PSA MOTS PAES
SMOSA 0.204 0.257 0.384 0.489
UMOSA 0.635 0.528 0.612 0.900
PSA 0.631 0.233 0.481 0.750
MOTS 0.181 0.226 0.073 0.303
PAES 0.081 0.033 0.000 0.386

Average results using MetricC.
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single-objective results detailed in [21]. Thecommuni-
cationslimit is defined by the worst initial solution in
this objective. Therefore, the work area of the GPP is
([0, max communications)], [0, max imbalance]).

4.3. Analysis of the Results

Table 2 shows the comparison among MOMHs for
the Metric C, considering the test graphs of Table 1
in the same order. In average (see Table 4) the non-
dominated solutions obtained by UMOSA dominates
more than half of the non-dominated solutions of the
other strategies. PSA also obtains good solutions for
this metric, mainly versus SMOSA, MOTS, and PAES.
On the contrary MOTS and PAES are the worst in this
comparison, which indicates the good performance of
the SA-based MOMHs.

Initial Solution Solution of X Solution of X’

max
imb.

%
 im

ba
la

nc
e

max
imb.

%
 im

ba
la

nc
e

(a) (b)#communications #communications

max_comms.max_comms.

Fig. 3. Graphical explanation of the metrics used over two
non-dominated sets.

In addition to the MetricC, we compare these
approaches by using the metricS. First and second
numerical columns of Table 3 show the absolute and
normalized enclosed area, respectively. Last row of this
table details the average normalized results. We can
observe the best performance is obtained by UMOSA.
These conclusions go in the same way that the obtained
for metricC.

The columncommunicationsshows the minimum
communication volume for this objective obtained by
any of the non-dominated sets for these test graphs. As
we can see in last column, SA-based MOMHs always
obtain, in average, the best results. It is important to
notice that, although we are solving the multi-objective
formulation, the results obtained are close to the best
known solutions for the single-objective case [21].

Previously, we have analyzed the results obtained by
the MOMHs over six test graphs. However, there are
cases were statistic results do not offer enough infor-

mation, because some of them can obtain good results
in some metrics, but not in others. Thus, in addition
to the numerical analysis, it is also interesting to study
graphically the fronts obtained. Figure 4 shows the non-
dominated solutions obtained by the MOMHs in the
partitioning of all the test graphs intoSG = 16 sub-
graphs, in the same order that appear in Table 1. These
figures help us to support the conclusions previously
obtained. For example, in first graphic (add20) we see
as UMOSA dominates all the other methods, except-
ing MOTS, whose solutions are non-dominated by the
other fronts. This graphical conclusion is related to the
results obtained in Table 2. In addition, these figures
display as population-based MOMHs (PSA and MOTS)
obtain larger non-dominated sets. Finally, we indicate
that the non-population approaches are faster than the
population-based versions (one order of magnitude). In
all cases the runtimes are less than one hour in the com-
puter described above.

5. Summary and Conclusions

This paper proposes a novel multi-objective for-
mulation of the network partitioning problem, which
simultaneously optimizes the load balancing among
sub-networks, and the amount of communication among
nodes belonging to different sub-domains. Further, we
have adapted five of the most important multi-objective
meta-heuristics proposed until now with the aim to
obtain high quality non-dominated fronts. The results
obtained in several test graphs, which model networks,
indicate that simulated annealing outperforms the par-
titions obtained by tabu search, and evolutionary meth-
ods. Comparing the first group, UMOSA obtains the
best performance, thanks to it executes several separate
runs with a diversified set of weights. However, the
number of non-dominated solutions obtained by the
population-based versions, like PSA, is often higher. In
same cases, the quality of the partitions are very close to
those obtained by other methods in the single-objective
formulation. These conclusions give useful information
in order to hybridize some of these strategies, taking
advantage of their particular characteristics. This ex-
perimental analysis also facilitates the multi-objective
treatment of other optimization problems.
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