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ABSTRACT

Effective watershed management requires accurate modeling of river discharge. Many years of data collection are 
often required to capture variations in seasonal trends and produce accurate predictive and descriptive models. In this 
study artificial neural networks that employ inductive transfer are used to develop models that predict the discharge 
(flow rate) of streams in Nova Scotia from weather data. The models use two days of weather data to predict the dis-
charge for the following day. The objective is to show that transfer of knowledge from previously learned models for 
streams can be used to reduce the time and cost associated with collecting large amounts of data for modeling the 
discharge of a nearby river.

Results show that models developed using only 180 days of training data with transfer from related streams perform 
as well on independent test data as models constructed using five years of training data and no transfer. The results 
also show that a considerable variance in stream discharge and stream morphology can be accommodated and that 
the induced models may be acceptable for management of the resource when little data are available. There is scope 
for improving the method of transfer by taking into consideration the degree of relatedness between the streams, 
watersheds, and their associated climate conditions.

RÉSUMÉ

Une bonne gestion des bassins versants exige une modélisation exacte du débit fluvial. Il faut souvent de nombreuses 
années de collecte de données pour rendre compte des variations saisonnières et produire des modèles de prévision et 
des modèles descriptifs exacts. Dans le cadre de cette étude, des réseaux neuronaux qui font appel au transfert induit 
de données météorologiques sont utilisés pour prédire le débit de cours d’eau en Nouvelle-Écosse. Les modèles retenus 
reposent sur deux journées de données météorologiques pour la formulation de prévisions du débit pour le lendemain. 
Il s’agit d’illustrer qu’il est possible d’utiliser des connaissances tirées d’autres modèles de cours d’eau déjà établis et 
de réduire ainsi le temps et les coûts associés à la collecte de données de modélisation du débit d’une rivière proche.

Les résultats indiquent que les modèles établis qui se fondent uniquement sur 180 jours de données de formation 
et tirées d’autres cours d’eau apparentés donnent d’aussi bons résultats à l’aide des données d’essai indépendant que 
par les données de modèles établis à partir de cinq années de données de formation, sans transfert. Les résultats éta-
blissent par ailleurs qu’il est possible de rendre compte d’un écart considérable dans le débit et la morphologie des 
cours d’eau et que les modèles produits à l’aide de données préalables sont acceptables pour la gestion de la ressource 
s’il y a peu de données. Il serait possible d’améliorer ce transfert de connaissances en tenant compte du degré de si-
militude entre les cours d’eau, les bassins versants et les conditions climatiques connexes.

[Traduit par la redaction]

INTRODUCTION

Stream discharge data are an important component in the 
assessment and management of ground water and surface wa-
ter resources and can be applied across a broad range of scales, 
including engineering design, flood forecasting, reservoir oper-
ations, water supply, recreation, and environmental manage-
ment. Growing populations and competing priorities for water 

are spurring the demand for more accurate, timely, and access-
ible water data. However, the field collection of data for model-
ing stream flow is time consuming and expensive. Time can be 
the most significant problem because five or more years worth 
of weather and stream data are commonly required to capture 
variation in seasonal trends and to produce accurate predic-
tive and descriptive models using standard statistical meth-
ods (Cheng et al. 2002; Costa et al. 2000; Stiff 2000). As well, 
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stream flow gauging station data are typically discontinuous 
as many stream gauging stations have not been maintained. 
If accurate models of stream discharge could be constructed 
from a temporally limited data set, such models would have 
considerable value.

To reduce the time and cost of collecting data, we propose 
the application of an advanced machine learning technique 
called inductive transfer to model stream discharge using arti-
ficial neural networks. Previously learned knowledge of related 
streams is used as a source of inductive bias in the development 
of a model for a new target stream.

This work should be distinguished from prior studies 
that employed neural networks to watershed management 
and focused on rainfall-runoff modeling (Bhattacharya and 
Solomatine 2003; Dawson and Wilby 2001; Dibike and 
Solomatine 2000; Jain and Chalisgaonkar 2000; Kompare et 
al. 1997), prediction of discharge (Muttiah et al. 1997), and 
modeling of chemical characteristics (Bastarache et al. 1997). 
These studies were done on large transboundary rivers such 
as the Brahmaputra (Sharma et al. 2005) and none employed 
inductive transfer from related streams. In this study we focus 
on 2nd to 4th order rivers, which are becoming an increas-
ingly important surface water resource, and on the use of in-
ductive transfer to supplement small sets of training data for 
these streams.

The streams investigated in this study are all located in Nova 
Scotia, Canada. The models make short-term predictions em-
ploying two consecutive days of weather data as input, with 
stream discharge predicted for the following day. This study is 
not a trivial undertaking, as the relationship between weather 
data and stream flow rate in Nova Scotia is complex (e.g., Stiff 
2007).

BACKGROUND

The stream gauging station data used in this study were 
gathered from three, 2nd order to 4th order streams located in 
drainage basins in the Annapolis Valley in western Nova Scotia 

and in the Shubenacadie Valley in Central Nova Scotia (Fig. 1). 
The Annapolis Valley is about 100 km long and 10 to 15 km 
wide. The topography varies from the steep slopes and scarp of 
the North Mountain, to the low relief valley floor, to the slopes 
and the raised peneplain of the South Mountain (Neily et al. 
2003; Hamblin 2004; Rivard et al. 2007; Trescott 1967, 1968).

The three gauging stations in the Annapolis Valley are lo-
cated within 60 km of each other (see Fig. 1 and Table 1). They 
were chosen because robust and easily accessed data sets are 
available for all three sites and a weather station (Greenwood, 
Fig. 1) for which a high quality data set exists is located nearby. 

Table 1. Summary of stream statistics. Source: Rivard et al . (2007).

Distance to 
Greenwood

Drainage 
Area

Average 
Discharge

Maximum 
Discharge

km  km2 m3/s m3/s

Annapolis River at 
Lawrencetown

22 1020 23.68 25.21 276

Annapolis River at 
Wilmot

9 546 12.26 13.83 140

Sharpe Brook 23 8.81 0.22 0.3 4.79

Shubenacadie  River 109 389 12.4 11.21 75.3

Name
Standard 
Deviation

Fig. 1. Locations of the four streams (Annapolis River at 
Lawrencetown, Annapolis River at Wilmot, Sharpe Brook, 
and Shubenacadie River) and the source of the weather 
data (Greenwood, Nova Scotia).
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Two gauging station sites from which data were gathered for 
this study are located on the Annapolis River. One station is 
located near the town of Lawrencetown, Nova Scotia (Fig. 1). 
Henceforth this site will be referred to as the Annapolis River 
at Lawrencetown (ARL). The second gauging station site is 
also along the Annapolis River and is located near the town of 
Wilmot (Fig. 1) This site is referred to as the Annapolis River 
at Wilmot (ARW). The third gauging station site is located 
near the outlet of Sharpe Brook, a 2nd order tributary of the 
Cornwallis River (Fig. 1). All three sites are located within the 
Annapolis Lowland physiographic region and Annapolis Valley 
climate region with headwaters in the Western Nova Scotia 
climate region. These climate zones are characterized by rela-
tively low rainfall (800–1200 mm annually) and warmer tem-
peratures than are typical of eastern Nova Scotia (Davis and 
Browne 1996).

Sharpe Brooke is a typical 2nd order valley side stream; it is 
ungraded along much of its length and has a fairly steep gradi-
ent averaging 27 m/km. The watershed for Sharpe Brook above 
the gauging station covers approximately 19 km2. Sharpe Brook 
typifies streams in Nova Scotia for which discharge data may 
be available as these streams are typically used for irrigation 
or are part of a municipal water supply system. The Annapolis 
River above the ARW gauging station is a 3rd order, primar-
ily valley bottom stream that is fed by streams very similar to 
Sharpe Brook. Most of the 190 km2 watershed for this gauging 
station is located on the south side of the Annapolis Valley. The 
ARL gauging station is located about 17 km downstream of the 
ARW gauging station; the watershed for this site encompasses 
780 km2. The Annapolis River (and the Shubenacadie River, 
see below) is typical of the valley bottom streams in Atlantic 
Canada that are a significant component of the groundwater 
system and serve as sources of water for irrigation and power 
generation. These large rivers can also be prone to flooding 
and surface runoff contamination (Stiff 2007). Gauging sta-
tions are rare on these systems and data quality and quality 
are commonly poor, hence the need to explore methods of 
discharge modelling. The ARL is the target site for this study.

Weather data were gathered for the town of Greenwood on 
the floor of the Annapolis Valley from the National Climate 
Data and Information Archive (Fig. 1). The valley floor is pri-
marily drained by the Annapolis River, which flows southwest 
to the Annapolis Basin, and the Cornwallis River, which flows 
northeast to the Minas Basin (Rivard et al. 2004, 2007). The 
population in the Annapolis Valley is rural, with towns and vil-
lages located primarily along the rivers. The most densely pop-
ulated region in the Annapolis Valley is the Coldbrook-Wolfville 
Urban Corridor to the east of Greenwood which supports 40% 
of the population of Kings County (Fig. 1). Agriculture domi-
nates the Annapolis Valley; in 1996 970 farms were recorded in 
Annapolis and Kings Counties with gross farm receipts totaling 
$152 M (Government of Nova Scotia 2002).

The Annapolis Valley is underlain mainly by Triassic sand-
stone and conglomerate and is flanked to the south by meta-
morphosed Paleozoic and granitic rocks of South Mountain 
and to the north by the Jurassic basalt highland of North 

Mountain (Rivard et al. 2007). Wisconsinan glaciation initi-
ated at approximately 75 ka in Nova Scotia, and the Annapolis 
Valley was ice free by about 12 ka (Stea et al. 1992). In south-
western Nova Scotia, four regional ice flow stages have been 
recognized during this time (Stea 1987). The resulting surficial 
geology is complex. Till, glaciofluvial, and fluvial deposits un-
derlie most of the study area. Till is the most common glacial 
deposit throughout the Annapolis Valley, mantling much of 
the study area, and varies in thickness from 1 m to possibly 
more than 20 m (Rivard et al. 2007; Trescott 1968). It rarely 
overlies a significant thickness of stratified drift, and may occur 
with inclusions of stratified drift. Till may also underlie bedded 
silt and clay estuarine deposits.

Local climatic conditions in the study area are heavily influ-
enced by the topography of the Annapolis Valley. For instance, 
the North Mountain and South Mountain uplands effectively 
funnel westerly winds through the Annapolis Valley, yet also 
serve as buffers to provide some protection from weather sys-
tems travelling over the Bay of Fundy and the Atlantic Ocean 
(Neily et al. 2003; Rivard et al. 2007). No part of the study 
area is more than 60 km from a large body of water (Atlantic 
Ocean or Bay of Fundy), which can lead to significant varia-
tion in both temperature and precipitation. The valley floor is 
partially protected from direct coastal influences from the Bay 
of Fundy by North Mountain. As a result, some of the highest 
summer temperatures in Nova Scotia have been recorded in 
the Annapolis Valley, particularly in the eastern part. Winter 
temperatures normally average about -4.5 °C. Total annual 
precipitation generally ranges between 1100 to 1300 mm in 
the Annapolis Valley (Neily et al. 2003; Rivard et al. 2007).

The fourth stream gauging station is on the Shubenacadie 
River, located in the central Nova Scotia Uplands about 100 
km east of the Sharpe Brook site (Fig. 1). The Shubenacadie 
River is primarily a 3rd and 4th order, low relief, valley bottom 
drainage system similar to the Annapolis River, with a water-
shed above the gauging station that encompasses 900 km2. The 
Shubenacadie River site is located in the Eastern Nova Scotia 
climate region, a diverse geographic area with high average 
rainfall (1000–1400 mm annually) and generally cool tempera-
tures (Davis and Browne 1996). As in the Annapolis Valley, the 
local bedrock and surficial geology is complex and the thick-
ness of overburden is highly variable. Land use in the region 
is primarily agricultural. This site was chosen to determine 
how regional climatological differences might affect transfer 
of knowledge from models of streams located in different phys-
iographic regions.

Prior to the 1960s little hydrologic information was available 
for the Annapolis Valley other than weather records (Trescott 
1968). Since the 1960s more data have become available, in-
cluding water quality data for the Annapolis and Cornwallis 
Rivers (Clean Annapolis River Project and Friends of the 
Cornwallis River Society, respectively), discontinuous mean 
daily discharge recorded at eleven gauge stations from 1915 to 
2002 throughout the Annapolis Valley, and weather data pub-
lished to the internet that had been recorded at seven climate 
stations throughout the province by Environment Canada. A 
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number of hydrological studies have been conducted in the 
Annapolis Valley. Trescott (1968) investigated groundwater re-
sources and hydrogeology of the Annapolis-Cornwallis Valley. 
Hennigar (1992) studied the hydrogeological and groundwa-
ter conditions in the Annapolis-Cornwallis Valley, and Myers 
(1997) looked at the fluvial dynamics and river restoration 
strategies in Mill Brook, a tributary of the Cornwallis River. 
Fenton (1998) studied surface water - ground water inter-
action and stream discharge in Elderkin Brook, a moderate 
gradient, 1st order tributary of the Cornwallis River. Levy 
(1998) investigated connectivity between input and stream 
discharge for Fishwick Brook, a 1st order, low gradient tribu-
tary of the Cornwallis River. Cook (2000) studied fluvial dy-
namics and river restoration strategies in Elderkin Brook and 
the South Annapolis River, a moderate gradient tributary of 
the Annapolis River. Blackmore (2007) completed a ground-
water vulnerability assessment for the Annapolis-Cornwallis 
Valley and associated watersheds as part of a Geological 
Survey of Canada-funded investigation of the hydrogeology 
of the Annapolis-Cornwallis Valley region (Rivard et al. 2007). 

The study by Rivard et al. (2007) and associated studies by 
Blackmore (2007), Trépanier (2008), and Gauthier (2008) 
represent a comprehensive evaluation of the groundwater 
resources in the Annapolis Valley and have contributed sig-
nificantly to understanding groundwater system dynamics in 
valley-ridge settings.

METHODOLOGY

Site Selection

In this study three gauging station sites are used as sources 
for knowledge transfer (ARW, Sharpe Brook, and Shubenacadie 
River) to train the target site (ARL). Data quality and quan-
tity from all sites are good (see Table 3). The ARW (4th or-
der stream, valley bottom site) and Sharpe Brook (2nd order 
stream, valley side and upland site) represent the spectrum of 
sites from which gauging station data is commonly available 
in Atlantic Canada. As well, high quality weather station data 

Table 2. Details of weather and discharge variables. Source: Government of Canada (2005a)

Parameter Name Unit Min. Max. Description

Month 12-Jan 1 12 The month of the year
Max Temp °C -17.4 35.6 Maximum daily temperature
Min Temp °C -35.5 22.6 Minimum daily temperature

Mean Temp °C -23.5 26.7 Mean daily temperature
Total Rain mm 0 106.7 Total daily rainfall

Total Snow cm 0 53.6 Total daily snowfall
Total Precipitation mm 0 106.7 Total daily precipitation 
Snow on Ground cm 0 112 Depth measured once per day

Dew Point °C -28.16 22.096 Hourly, averaged over the day
Relative Humidity % 38 99.583 Hourly, averaged over the day
Mean Wind Speed km/h 0 61.208 Hourly, averaged over the day

Visibility km 0.7083 25.45 Hourly, averaged over the day
Atmospheric Pressure kPa 96.611 104.54 Hourly, averaged over the day

Discharge m3/s varies varies Hourly, averaged over the day

Table 3. Years used for training, validation, and test datasets.

Stream 1986 1987 1988 1989 1990 1991 1992/3 1994 1995

Annapolis River at 
Lawrencetown

Annapolis River at 
Wilmot
Sharpe
Brook

Shubenacadie 
River

Val.Training Test
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are available from a site (Greenwood) that is central to ARL, 
Sharpe Brook and ARW. Training the ARL using secondary task 
data from the Shubenacadie River gauging station provides a 
test for the regional transportability of this technique.

Machine Learning and  
Artificial Neural Networks

Machine learning is the study of computing systems that 
improve automatically from experience they acquire from their 
environments. Machine-learning algorithms use experience, 
in the form of training examples, such as daily weather and 
stream discharge data, to develop or induce models to pre-
dict future events such as how rivers will react as a function of 
weather conditions.

Artificial neural networks use a method of machine learn-
ing based on computational models of biological neurons and 
networks of neurons as found in the central nervous system 
of humans. Neural network modeling systems take advantage 
of massive numbers of parallel processing nodes which work 
cooperatively to solve a problem. A range of neural networks 
have been developed; however, the basic structure of an arti-
ficial neuron remains the same - to integrate its inputs and to 
generate an output value as a function of this input. Learning is 
achieved by modifying the weight of the individual connections 
between the neurons. In an artificial neural network (simulated 
by computer software) the effectiveness of an input, xi, from 
some other neuron is determined by the weight, wi, of the con-
nection from that neuron. Each neuron has an additional input 
which is referred to as a bias, xb, (not to be confused with induc-
tive bias mentioned earlier and discussed later in this section). 
The input value for the bias is fixed to 1, however its weight, 
wb, is modified during the process of learning. Input integra-
tion is accomplished by an input function which for a unit, j, 
is most often a simple summation, Ij = ∑i xiwij. The output of 
the neuron, j, is produced by pushing the value of Ij through 
an activation function. The most commonly used activation is 
the sigmoid function given by yj = 1/(1 + e-Ij) where yj is the out-
put of unit j. This function maps its input to the interval (0,1) 
becoming asymptotic as the absolute value of summation Ij in-
creases. The behavior of an artificial neural network, depends 
upon three fundamental aspects; (1) the input and activation 
functions of the unit (neuron structure), (2) the input connec-
tivity from other neurons (network architecture), and (3) the 
weight on each of the input connections. Given that the first 
two aspects are fixed, the behavior of the ANN is defined by 
the learned values of the weights.

The paper presents the results of using multi-layer feed-
forward neural networks as shown in Figure 2. The networks 
are simulated as part of a general machine learning environ-
ment developed at Acadia University called the Research and 
Application Sequential Life-long Learning system, or RASL3 
(ML3 2009). Each network consists of an input layer, a hidden 
layer, and an output layer of neurons connected in a strictly 
feed-forward fashion. The network accepts inputs and gener-
ates outputs that are continuous and in the range (0,1). To 

classify an example, the set of attribute values are presented 
to the input nodes. Each input node forwards the value on to 
all nodes in the hidden layer. The hidden nodes compute their 
activations and forward them on to all nodes in the output 
layer. The activation value(s) produced by the output node(s) 
indicate(s) the predicted class.

To learn a task using neural networks of the type shown in 
Figure 2, the weights of the connections must be adjusted to 
produce the hypothesis with greatest generalization. The most 
widely used learning algorithm for this type of network is the 
back-propagation of error algorithm (Mitchell 1997). The sum 
of squared errors between the output(s) of the network and the 
target output(s) as provided by the training examples is back-
ward propagated from the output layer down through each of 
the hidden layers. The change in each weight is expressed as 
the derivative of the error with respect to weight. At each node, 
each incoming connection weight is adjusted to minimize the 
error contributed by that weight to the global error. Thus, the 
process of learning is one of iteratively presenting the train-
ing examples and making small weight changes to reduce the 
error. The algorithm stops when the error across all examples 
reaches a minimum. This learning process can be described as 
gradient descent through a space of all weights in the network 
in search of a set of weight values that minimizes the error for 
all training examples.

The performance of a model, and therefore the machine 
learning algorithm that produced it, is normally based on how 
accurately it predicts output values for a previously unseen set 
of test examples. This is referred to as the model’s general-
ization performance. Sufficient generalization performance 
is necessary to provide confidence in the model’s ability to 
make future predictions. To ensure the development of a neu-
ral network model that will have good generalization (predic-
tive accuracy), a randomly chosen validation or tuning set of 
examples is used to monitor when the model starts to overfit 
the training data. In summary, when developing a network 
model, one typically creates training, validation, and test sets 
from the available data. The training and validation sets are 
used to train the model, and the independent test set is used 
to judge the generalization performance of the model.

Inductive Transfer and  
MTL Neural Networks

Every machine learning method has a space of models or 
hypotheses (e.g., linear equations, logical expressions, graphi-
cal structures, or probability tables). The development of a pre-
dictive model can be considered a search over this space for the 
hypothesis that best matches the training examples. Anything 
that constrains the search within this hypothesis space, beyond 
the training examples, is called inductive bias (Mitchell 1997). 
Inductive bias is essential for the development of a hypothesis 
with good generalization from a practical number of exam-
ples. Without inductive bias accurate learning cannot occur 
because the training examples are insufficient for selecting the 
best model. Ideally, a learning system can select its inductive 
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bias to tailor the preference for hypotheses according to the 
task being learned (Thrun 1997). One type of inductive bias is 
prior knowledge of the domain of tasks being learned. A do-
main of tasks is defined by some sense of relatedness between 
the tasks, minimally they all share the same inputs and, more 
specifically, they share similar invariances or features over the 
input space.

The retention and use of task domain knowledge (DK) as a 
source of inductive bias has become known as inductive trans-
fer or transfer learning, and remains an open problem in ma-
chine learning (Caruana 1997; Thrun 1997, Silver and Bennett 
2008). The goal of inductive transfer research is to find ways 
of using prior knowledge to develop more accurate hypoth-
esis (models) with fewer training examples as quickly and ef-
ficiently as possible (Silver and Mercer 2002).

Knowledge Transfer in MTL Networks.

Multiple task learning (MTL) neural networks are one of 
the better documented methods of inductive transfer (Caruana 
1997). An MTL network is a feed-forward multi-layer network 
with an output for each task that is to be learned. The standard 

back-propagation of error learning algorithm is used to train all 
tasks in parallel (Mitchell 1997). Consequently, MTL training 
examples are composed of a set of input attributes and a set of 
target outputs, one for each task. Figure 2 shows an MTL net-
work containing a hidden layer of nodes that are common to 
all tasks. The sharing of internal representation is the method 
by which inductive bias occurs within an MTL network (Baxter 
1996). The more tasks are related the more they will share rep-
resentation and create beneficial inductive bias.

Sequential Learning through Task Rehearsal.

The task rehearsal method was introduced by Silver and 
Mercer (2002) as a machine life-long learning system that is 
able to retain and recall task knowledge. After a task, Tk has 
been successfully learned, its hypothesis representation is 
saved in a domain knowledge store. This representation acts 
as a surrogate for the space of input-output examples that de-
fines task Tk. Virtual examples of the input-output space for 
Tk can be produced by passing inputs to the domain knowl-
edge representation for Tk and recording the outputs. When 
learning a new task, T0, the domain knowledge representa-

Fig. 2. An example of a multiple task learning (MTL) network with an output node for each task being learned in parallel. 
Inductive transfer between tasks occurs as a function of sharing internal representation (connector weights Wij) below the 
common feature layer.
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tions for tasks T1...Tk...Tt are used to generate corresponding 
virtual output values from the set of T0 training examples. The 
resulting set of virtual examples is used to relearn, or rehearse, 
the domain knowledge tasks in parallel with the learning of 
T0 in an MTL network. MTL training can be started from ei-
ther random initial weights or from the prior domain knowl-
edge weights (O’Quinn et al. 2005; Poirier and Silver 2004). 
It is through the sharing of internal representation and the 
rehearsal of previously learned tasks that prior knowledge is 
transferred to the new task.

Theory and Approach to Model Development

The objective of this research was to determine the value 
of inductive transfer as applied to modeling of discharge for 
a target stream using the data from one or more gauging sta-
tions as a source of transfer. Our hypothesis was that a previ-
ously developed model of discharge for a specific stream can 
be used as a source of inductive transfer when developing a 
model for a distinct but geospatially and geomorphologically 
related stream. Through the use of prior model knowledge and 
inductive transfer, fewer years of training data are required to 
construct accurate models. The more physically and hydro-
logically similar, or related, the streams are, the greater the 
expected benefit from the transfer.

In this study, the sources of knowledge transfer are stream 
discharge datasets that exist for ARW, Sharpe Brook, and the 
Shubenacadie River near Enfield (Fig. 1). The primary target 
task is predicting discharge at the ARL gauging station (Fig. 1).

To demonstrate the value of inductive transfer, the follow-
ing approach is taken. First, standard single task learning (STL) 
models are created using standard back-propagating neural 
networks for the Annapolis River at Lawrencetown for data 
sets ranging from 180 days to five years. Next, domain knowl-
edge (DK) models based on 5 years of training data are con-
structed for (1) the ARW, located upstream of the ARL and 
having approximately half the discharge, (2) Sharpe Brook, 
located nearby but in a different drainage basin, (3) the pre-
vious two streams together in an MTL back-propagating net-
work, and (4) the Shubenacadie River at Enfield, located in a 
geomorphologically distinct drainage basin located about 120 
km from the other sites with a unique, local climate. Finally, 
the four DK models are each used as a source of transfer for 
learning the primary task (the ARL) in MTL networks task re-
hearsal as described in Section 2.2. To ensure a fair comparison, 
the models developed with inductive transfer are trained with 
the same primary task data used to develop the STL models.

The models were supplied with two days of weather data 
from Greenwood, Nova Scotia, to predict the discharge for the 
following day as this time frame best captures the duration of 
precipitation events in the study region. The STL and MTL 
models were tested against an independent test set and com-
pared. The Mean Absolute Error (MAE) is the average of the 
absolute value of the error of each example and is reported 
in cubic meters per second (m3/s). The correlation measures 

the covariance of the actual and predicted discharge. Graphs 
of the actual vs. predicted discharge over a period of time are 
also used to analyze where the models are performing well or 
poorly. Paired, two-tailed T-tests of the difference of the MAE 
are used to measure if the difference between the STL and in-
ductive transfer models are significant.

Data Collection and Preparation

The weather and stream data used in this study were ob-
tained from two distinct sources within Environment Canada 
for the years 1986–1995. The weather data come from the 
on-line National Climate Data and Information Archive 
(Government of Canada 2005a). It was received in hourly, 
daily, and monthly formats depending upon the variable (tem-
perature, precipitation, pressure, etc.). For the purposes of this 
study all data was converted to daily values (total, mean, maxi-
mum or minimum). Table 2 provides descriptions and statistics 
of the various weather parameters used in the study. Table 3 
shows which years of data were used for training, validation, 
and testing.

The weather data were reasonably complete. Where neces-
sary, missing values were input using the average of the pre-
vious and next day values. A large amount of weather data 
are missing for the period from December 1992 to November 
1993. Hence, the decision was made not to use data from this 
period. Consequently, the year labeled “1992/93” in Table 3 is 
composed of data from January to November, 1992, and data 
from December, 1993.

Discharge data for several streams were obtained through 
the on-line Water Survey of Canada “HYDAT” database 
(Government of Canada 2005b). Stream discharge data are 
currently being recorded at nearly 3000 sites across Canada, 
and are available in near-real time from just under half of those 
sites. The ARW is the only site used in this research which is 
currently monitored in real time. Historic data for Sharpe 
Brook and the Shubenacadie River are available through to 
April, 1995, whereas the ARL has data available through to 
December 2000 and for the entire year of 2003.

The weather and stream data required a significant amount 
of preparation prior to modeling. The data were combined 
into a single tab-delimited file using a series of Perl scripts that 
removed header information, calculated daily statistics, and 
combined data from multiple files into a single file ready for use 
by the neural network modeling software. Each row of the final 
example sets contains 25 input variables (the current month, 
12 weather variables for yesterday, 12 weather variables for 
today), and one target output variable (the discharge value 
for tomorrow). 

The studies consider the effect of secondary task transfer 
with varying amounts of training data for the primary task, 
which is stream discharge for the ARL. For the primary task, 
training sets containing five years, three years, one year, and 
180 days of data were used, along with one year of validation 
data and two years of test data. The validation or tuning set of 
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data was used to prevent over fitting the neural network model 
to the training data. For the DK models constructed as sources 
of transfer, five years of training data were used, with one year 
of validation data and two years of test data. The data used for 
ARL was shifted forward a year so as to realistically challenge 
the task rehearsal method to create novel virtual examples for 
rehearsal of the secondary tasks. Table 3 shows the years of data 
used for each stream. For the ARL, the five-year period consists 
of January 1, 1987, to December 31, 1991 (1825 examples); the 
three-year period is from 1987 to 1989 (1095 examples), the 
one-year period is 1987 (365 examples), and the 180 days were 
selected at random from the 1987 data ensuring 10 to 15 days 
per month. The data from 1992/93 (365 examples) was used 
as validation data to prevent overfit to the training set. The in-
dependent test data are from the years 1994 and 1995 (730).

Model Development and Analysis

This section covers the development and comparison of the 
various models as outlined in the previous section on theory 
and approach to model develpment.

Neural Network Architecture  
and Learning Parameters

Three layer networks were used for all models (Fig. 2). 
Twenty hidden nodes were chosen for the STL and MTL net-
works. This provided sufficient representation for multiple 
tasks within the MTL networks when using one secondary 
DK task. Thirty hidden nodes were chosen for MTL networks 
with two secondary DK tasks. Provided a validation set is used 
to prevent over-fitting, additional hidden nodes do not hinder 
the development of accurate models. A learning rate of 0.0025 
was used to produce faster training when transfer was not used, 
without loss of accuracy, and 0.001 was used for the MTL net-
works when transfer is occurring from the secondary tasks. The 
momentum term remained constant at 0.9 and random initial 
weights were chosen in the range (-0.1 to 0.1).

STL Models for the Annapolis River  
at Lawrencetown (ARL)

The purpose of this experiment was to develop models us-
ing single task learning (STL) neural networks with varying 
amounts of training data that predict the following day’s dis-
charge for the ARL. The performance of the models on the test 
set were compared to each other and subsequently to models 
constructed with inductive transfer using prior knowledge. 
This experiment used the four different training sets described 
earlier and shown in Table 3. The models were developed us-
ing a 25-20-1 (input-hidden-output) network. Five repetitions 
were performed for each set of training data with different ran-
dom initial weights. Up to 1.5 million training iterations were 
allowed for each repetition.

Figure 3 presents the performance (and 99% confidence in-

tervals) of the various STL models on the test set as a function 
of the number of training examples. The graphs show that the 
models steadily improve as more training data were used. The 
exception is the set of models developed with only 180 days 
of data. These models have slightly better performance than 
those developed with one year’s worth of data. We speculate 
that this is because, by chance, the random sample of data 
chosen for the 180-day training set is closer to that of the test 
set than the one year training set. That is to say, the one-year 
dataset contains some additional noise.

Figures 4 and 5 compare the test set graphs of the actual vs. 
predicted stream discharge for the 180 day and five-year STL 
models. The five-year STL model can be seen to better predict 
the discharge peaks and generally follow the trends of the ac-
tual data. This reflects the improvement in MAE and correla-
tion performance over the 180-day model.

Fig. 3. Performance of Annapolis River at Lawrencetown 
models on the test set with and without transfer as a func-
tion of the amount of training data.
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Fig. 4. Annapolis River at Lawrencetown actual discharge vs. predicted discharge for a 180 day single task learning (STL) 
model without transfer.

Fig. 5. Annapolis River at Lawrencetown actual discharge vs. predicted discharge for a 5-year STL model without transfer.
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Domain Knowledge Models for  
the Secondary Streams

The objective of this experiment was to develop STL and 
MTL DK models for the secondary streams to be saved for 
transfer to the primary task. A secondary objective was to com-
pare the accuracy of models for these streams. The model for 
the Shubenacadie River is of particular interest given that it 
is the most distant from the source of weather data. All mod-
els used five years of data for training (1986–1990), one year 
for validation (1991), and two years for testing (1992/93 and 
1994), as shown in Table 3. STL models were constructed for 
Sharpe Brook, the ARW, and the Shubenacadie River. An MTL 
model was also constructed for Sharpe Brook and the ARW 
to observe the effect of simultaneous transfer from two prior 
models. The STL models used 20 hidden nodes, while the MTL 
models used 30 hidden nodes. The four models were saved as 
separate DK for later use in inductive transfer.

Table 4 shows that the correlation performance for all mod-
els is at the same level (~ 0.7) and near that of the five-year 
STL models for the ARL. The variance in the mean absolute 
discharge error (m3/sec) between the streams is due to vari-
ability in stream catchments (Sharpe Brook watershed is much 
smaller than the others considered in this study). The MTL 
models developed for Sharpe Brook and the ARW are not sig-
nificantly better or worse than the individual STL models. The 
Shubenacadie River models have the lowest correlation of all 
models at 0.671. Graphs of actual versus predicted discharge 
(not shown) reveal that the Shubenacadie River is somewhat 
different from the other streams, and that the associated mod-
els suffer from a number of over-predictions made in the sum-
mer and fall. This result is likely because the weather data used 
was from Greenwood which is a significant distance from the 
Shubenacadie River site.

MTL Inductive Transfer Models for the Annapolis River  
at Lawrencetown (ARL) Gauging Site

The purpose of this experiment was to compare models of 
the ARL using transfer from each of the four DK models of 
the secondary streams developed in the previous section with 
that of the STL models presented in the last section. The same 
training, validation and test data used during STL model de-
velopment were used for this experiment. All modeling was 
done using MTL networks which were initialized with the rep-
resentation of a previously learned DK model. An additional 
output is added to the network for the target ARL task. The 
models developed from STL DK used 20 hidden nodes and two 
outputs, for a 25-20-2 network, while the models developed 
from the MTL DK used 30 hidden nodes, with a total of three 
outputs, for a 25-30-3 network.

The performance results are presented in Figure 5. All mod-
els developed under MTL with inductive transfer using 180 
days, one year, and three years of training data performed sig-
nificantly better than the associated STL models and no induc-
tive transfer. MTL models developed with five years of data 

performed as well as or better than the associated STL models. 
All sources of transfer are beneficial, with the ARW as the best 
source and the Shubenacadie River as the worst.

DISCUSSION

The objective of this research is to determine the value of 
inductive transfer as applied to the modeling of discharge. The 
target stream (ARL) is typical of larger, 4th order and higher 
valley bottom streams in Atlantic Canada for which accurate 
discharge models are required. Our hypothesis was that previ-
ously developed models for discharge of a distinct gauging site 
(ARW) or stream (Sharpe Brook) can be used as a source of in-
ductive transfer for a distinct but spatially and geomorphologi-
cally related stream (ARL). We also tested whether an unrelated 
stream (Shubenacadie River) in a distinct physiographic region 
could be used as a source of inductive transfer. In all cases, our 
results indicated that fairly accurate models can be developed.

It is important to compare the consistent performance of 
the models developed under transfer to those without trans-
fer. The performance of MTL models varies only slightly as the 
amount of training data changes, particularly when the source 
of transfer is the ARW (see Figure 5). Clearly this site is the best 
source of prior knowledge for developing models for the ARL. 
This result makes sense as the two locations are closest to each 
other and are on the same river system.

The models for the ARL developed using the Sharpe Brook 
and Shubenacadie River as sources of inductive transfer do not 
perform quite as well as models developed with transfer from 
the ARW (Fig. 5). Both Sharpe Brook and the Shubenacadie 
River are in different drainage basins than the ARL. Sharpe 
Brook is a significantly smaller stream than the ARL and the 
Shubenacadie River is the more distant stream. This result sup-
ports the theory that more related prior knowledge leads to 
more beneficial inductive transfer. Combining Sharpe Brook 
with the ARL as a source of transfer creates models that per-
form better than models with transfer from only Sharpe Brook, 
but worse than models with transfer from only the ARW.

Although the ARL model developed with 180 days of train-
ing data and transfer from ARW (Fig. 6) does statistically as well 
as the STL model developed with 5 years of training data (Fig. 
4), the model with transfer tends to be more conservative in 
its predictions. The MTL transfer model does not predict the 

Stream MAE Correlation

Sharpe Brook  STL 0.131 0.702
Annapolis River at Wilmot STL 6.754 0.709

Sharpe Brook  MTL 0.140 0.707
Annapolis River at Wilmot MTL 6.721 0.706

Shubenacadie River STL 7.149 0.671

Table 4. Performance of domain knowledge models on 
their respective test sets.
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highest discharge value (March 1994) as accurately as the STL 
model based on five years of training data. Two reasons for this 
are (1) portions of the chosen test set are atypical as they con-
tain some very high discharge values, and (2) the models used 
only two days of weather data as input. The peak discharge 
recorded in March, 1994 (276 m3/s) for the ARL is the highest 
value recorded for all streams in the study. By comparison, the 
highest value in the 180 day training set is 168 m3/s, while the 
highest value in all other training sets is 205 m3/s recorded in 
1987 (Government of Canada 2005b). Because none of the 
models are trained with target outputs of this magnitude the 
models perform poorly on the 1994 portion of the test set. 
This explains why models developed from the 180 day training 
set tend to under-predict peak values as compared to models 
developed with 5 year training sets. If the performance of the 
best models are examined using only the 1995 portion of the 
test set, the MAE decreases from 12.6 m3/s to less than 10 m3/s. 
This occurs because the highest value recorded in 1995 was a 
more typical 154 m3/s.

The second reason why the models err on extreme discharge 
values is that only two days of weather data are used and knowl-
edge of recent discharge levels is not provided. This can lead to 
under-prediction when the stream level is at bankfull stage or 
higher (typically in the spring and late fall) and over-prediction 
when the stream level is at or below baseflow stage (typically 
in the summer). An efficient method of adding more days of 
weather data and knowledge of recent stream discharge would 
increase the performance of the models.

Based on the above, one could argue that the models devel-

oped with inductive transfer do better at predicting when an 
extreme in stream discharge will occur than they do in predict-
ing the magnitudes of those extremes. Despite doing well in the 
normal range, the graphs show that the MTL models under-
predict a number of the peak discharge values. Nonetheless, 
the models provide a significant performance advantage over 
the less accurate alternatives; models developed without trans-
fer using standard STL. Therefore, we propose that the MTL 
models provide a valuable starting point when little data are 
available. As time passes, new data collected for the primary 
stream can be combined with the existing data so as to continu-
ally develop more accurate models.

CONCLUSIONS

The results of the research supports the hypothesis that in-
ductive transfer of previously learned knowledge can reduce 
the number of years of training examples required to con-
struct accurate models of stream discharge. Inductive trans-
fer via MTL and task rehearsal with as little as 180 days of 
training data for the primary task produces predictive models 
that are statistically equivalent to models developed from five 
years of training data and no transfer. The experiments also 
demonstrated that the more related prior models of stream 
discharge (the Annapolis River at Wilmot) generated the best 
models for the target task (discharge at the Annapolis River at 
Lawrencetown). We conclude that inductive transfer methods 
should be considered when modeling river discharge and that 

Fig. 6. Actual versus predicted discharge for a model of Annapolis River at Lawrencetown developed with 180 days of 
training data and with transfer from the Annapolis River at Wilmot.
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value exists in the systematic retention and reuse of models 
from any environmental problem domain.

Several interesting directions for future work have been 
identified. More accurate models could be developed by in-
creasing the amount of weather data used as input beyond two 
days. Extending this window of weather data should increase 
the accuracy of the models. Keeping in mind that additional 
inputs increase the sample complexity and training times, we 
are currently investigating the use of recurrent neural networks 
that can maintain a sense of context while only requiring a 
single day’s weather as input (Mitchell 1997). A second ap-
proach to improving model performance is to use the known 
discharge of one stream as an input to the model for another 
stream. For example, the discharge of the ARW, which is con-
stantly monitored, could be used as an input to a model for 
the ARL. This approach would allow all streams in a drainage 
basin to benefit from monitoring one stream.

We have also identified several questions regarding the lim-
its of inductive transfer applied to stream discharge and more 
generally to environmental modeling. Can we use data from 
large streams that have been monitored for some time to bet-
ter model smaller secondary streams for which we have little 
data? Our intention is to explore this in future work. Can prior 
knowledge of a model in one region, using weather data from 
that region, be used to transfer knowledge to a stream in a 
different region, using weather data from that second region? 
There is no reason why this cannot be the case. An issue related 
to both of these questions is determining a measure of relat-
edness between streams and their associated watersheds and 
climatic conditions to ensure the approach is beneficial to the 
development of accurate models.
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