
Copyright (c) Mike Sosteric, Susan Hesemeier, 2002 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des
services d’Érudit (y compris la reproduction) est assujettie à sa politique
d’utilisation que vous pouvez consulter en ligne.
https://apropos.erudit.org/fr/usagers/politique-dutilisation/

Cet article est diffusé et préservé par Érudit.
Érudit est un consortium interuniversitaire sans but lucratif composé de
l’Université de Montréal, l’Université Laval et l’Université du Québec à
Montréal. Il a pour mission la promotion et la valorisation de la recherche.
https://www.erudit.org/fr/

Document généré le 25 mai 2024 17:42

International Review of Research in Open and Distributed Learning

When is a Learning Object not an Object: A first step towards a
theory of learning objects
Mike Sosteric et Susan Hesemeier

Volume 3, numéro 2, octobre 2002

URI : https://id.erudit.org/iderudit/1072878ar
DOI : https://doi.org/10.19173/irrodl.v3i2.106

Aller au sommaire du numéro

Éditeur(s)
Athabasca University Press (AU Press)

ISSN
1492-3831 (numérique)

Découvrir la revue

Citer cet article
Sosteric, M. & Hesemeier, S. (2002). When is a Learning Object not an Object: A
first step towards a theory of learning objects. International Review of Research
in Open and Distributed Learning, 3(2), 1–16.
https://doi.org/10.19173/irrodl.v3i2.106

Résumé de l'article
For some, “learning objects" are the “next big thing” in distance education
promising smart learning environments, fantastic economies of scale, and the
power to tap into expanding educational markets. While learning objects may
be revolutionary in the long term, in the short term, definitional problems and
conceptual confusion undermine our ability to understand and critically
evaluate the emerging field. This article is an attempt to provide an adequate
definition of learning objects by (a) jettisoning useless theoretical links hitherto
invoked to theorize learning objects, and (b) reducing the definition of learning
objects to the bare essentials. The article closes with suggestions for further
research and further refinement of the definition of learning objects.

https://creativecommons.org/licenses/by/4.0
https://apropos.erudit.org/fr/usagers/politique-dutilisation/
https://www.erudit.org/fr/
https://www.erudit.org/fr/
https://www.erudit.org/fr/revues/irrodl/
https://id.erudit.org/iderudit/1072878ar
https://doi.org/10.19173/irrodl.v3i2.106
https://www.erudit.org/fr/revues/irrodl/2002-v3-n2-irrodl05612/
https://www.erudit.org/fr/revues/irrodl/

International Review of Research in Open and Distance Learning
Volume 3, Number 2. ISSN: 1492-3831

October - 2002

When is a Learning Object not an Object:
A first step towards a theory of learning objects
Mike Sosteric and Susan Hesemeier
Athabasca University, Canada – Canada's Open University

Abstract

For some, “learning objects1 “ are the “next big thing” in distance education promising
smart learning environments, fantastic economies of scale, and the power to tap into
expanding educational markets. While learning objects may be revolutionary in the long
term, in the short term, definitional problems and conceptual confusion undermine our
ability to understand and critically evaluate the emerging field. This article is an attempt
to provide an adequate definition of learning objects by: a) jettisoning useless theoretical
links hitherto invoked to theorize learning objects; and b) reducing the definition of
learning objects to the bare essentials. The article closes with suggestions for further
research and further refinement of the definition of learning objects.

Introduction

Fill your bowl to the brim and it will spill. Keep sharpening your knife
and it will blunt. Chase after money and security and your heart will
never unclench. Care about people’s approval and you will be their
prisoner.

The advent of the Internet and the expansion of the World Wide Web have created new
communication options for our society. New options for leisure activities (surfing the
Web, playing games), commerce (Web shopping), and social development (Web
activism), to name only a few, have all emerged within the last few years. It is not
hyperbole to say we now live in a connected society where access to information has
become the defining life characteristic for many of those fortunate enough to enjoy easy
access to information technologies. It is not surprising that this enhanced access to
information has influenced the way we live our lives. Authors will disagree about the
quality and quantity of this influence (Webster, 1997), but few would care to argue that
changes have been significant in one aspect or another.

Our concern in this article is with information technology as it is applied to the
educational process. But our concern is not with information technology and education in
general, but with a specific example of information technology that is being created to
bolster the educational system (K-12 and post secondary), known as a learning object.

What is a learning object? Good definitions are difficult to find, and it is really the task of
this article to begin the process of developing an adequate definition by: a) jettisoning
inappropriate theoretical formations; and b) simplifying our definition of learning object.

http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#1

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

2

For the purposes of introduction, however, we can say that a learning object is a digital
file used in educational settings to support instruction (from K-12, and all levels of post-
secondary instruction). Later in this article, we will discuss how learning objects have
special characteristics that distinguish them from more mundane learning resources of the
type most educators would be familiar with.

Learning objects have been on the educational agenda for several years now (IEEE,
1998). Even so, the corpus of research on learning objects is less than satisfying. This
does not mean that research has not been conducted. Organizations such as the IMS
Global Learning Consortium (IMS)2 and the IEEE3 have contributed significantly by
helping to define indexing (metadata) standards for object search and retrieval. There has
also been some commercial (Baron, 2000) and educational work accomplished (Careo,
2000). But there is a vacuum in descriptive, analytical, and critical examinations of
learning object technologies.

This article is our entry into what will hopefully be a dynamic and energetic fray. In an
attempt to capture their true nature, we provide an overview of learning objects. In order
to evaluate the usefulness of thinking about learning objects in terms of Computing
Science (CS) programming techniques, we start by looking at past attempts to define
learning objects, and then continue by looking at the ostensible link between learning
objects and Object Oriented Programming theory (OOP for short). We end our
examination of OOP theory by concluding that CS OOP theory has little to offer in our
attempt to define and understand learning objects. Finally, we conclude the article with a
short working definition and suggestions as to where future work is needed in the
fleshing out of our understanding of learning objects.

What is a Learning Object?

More than a few words have been produced while trying to give a clear picture of what
learning objects are all about. Yet confusion is apparent in the literature, as no consistent
definition of learning objects seems to exist. A recent article in Learning Circuits
highlights this difficulty.

It may surprise you that no single learning object definition exists within
the e-learning industry. Learning objects are different things to different
e-learning professionals. In fact, there seems to be as many definitions as
there are people to ask (ASTD, 2002: 3).

Several problems have made defining learning objects difficult. One bothersome
difficulty is that existing definitions are far too general to be of any use in identifying,
developing, or criticizing learning objects. As an example, consider the ASTD (2002: 3)
article cited above. It begins with the following definition of a learning object: “At its
most basic level, a learning object is a piece of content that’s smaller than a course.”
Friesen (2001) also illustrates this particular problem when he quotes from an IEEE
definition of learning objects:

The Learning Technology Standards Committee (LTSC) defines an object
as “any entity, digital or non-digital, which can be used, re-used or
referenced during technology supported learning.” The LTSC provides
examples of these objects, including “multimedia content, instructional
content, learning objectives, instructional software and software tools,
and persons, organizations, or events referenced during technology
supported learning.”

http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#2
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#3

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

3

To paraphrase the above definition, a learning object is “anything that can be used during
technology supported learning.” The definition lumps all digital and non-digital “things”
into the learning object category. Obviously, a definition that includes “everything” is not
a definition at all. There is nothing in such a definition to suggest how we might
distinguish a learning object from more mundane technological support or any other
learning resource such as a computer or a keyboard, for example, and there is certainly
nothing to assist us if we want to develop a learning object. All that we know from this
definition is that learning objects are “something” used in some sort of learning
environment.

We realize, of course, that one might say that anything digital could be used as a learning
object. For example, a picture of a rose (or the actual rose itself) could be used in various
scientific disciplines to illustrate biological, chemical, or psychological processes.
However, this loose definition is problematic for two reasons. On the one hand, most
authors seem to assume that objects are more than mere digital files. As we will see
below, most authors like to attribute several special features to learning objects such as
reusability, searchability, etc. At the least, our definition needs to include these special
features. Of course, including these special features will have the net result of excluding
those digital files that do not have the required features.

On the other hand, “things” (and this includes more mundane things used as traditional
learning resources) do not become useful in learning environments until they are attached
a context to them. Consider this picture http://aloha.netera.ca/uploads/crdc/unt5049b.jpg,
which exists inside a Canadian learning repository as a learning object. This image is a
piece of multimedia content that can be used during technology-supported learning.
However, just looking at the picture linked above teaches us nothing. Are we to learn
something about religious devotion, or respect for elders, or multiculturalism, or foreign
languages, or the creation of posters? We simply do not know this from casual
observation. What would make the above image a “learning object,” would be additional
information that would allow an instructor or instructional designer (or perhaps even an
automated program) to know how to use the object in an educational setting.

In the low-tech world, the instructor normally provides this contextual information, by
harvesting objects and putting them onto projection screens, or passing them around to
students while engaging in lengthy discourse about them. In fact, instructors provide
much more than just contextual information; they interpret objects and creatively
reorganize their context, and this requires a vast amount of background information. This
is a critical function of instructors and its importance is recognized in the learning object
literature. By developing learning object metadata standards that provide the necessary
context for the educational resource, the IMS (2000) and the IEEE have helped to provide
the necessary infrastructure for contextualized learning objects that has, in the past, been
provided almost solely by instructors.

In the literature on learning objects, the importance of context is not in question. The
point we are asserting here is that because “context” is so important, it should be made
part of the definition. A learning object is not just any digital file or any object under the
sun. At the least, anything that could be considered a learning object would need
associated instructional information. This occurs even with mundane “objects.” Images
are often placed in textbooks, but the images themselves are always captioned and
explanatory material is provided in the text. Of course, in technological settings where
the goal is to use these objects in semi-automated instructional systems, the provision of
this type of instructional context is critical.

http://aloha.netera.ca/uploads/crdc/unt5049b.jpg

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

4

Although authors tend to want to include digital and non-digital content as learning
objects, we do not feel this is useful. As they are applied in the real world, learning
objects are clearly digital objects. Repositories and standards, and all the work being
done on learning objects, refer to digital objects. It makes little sense to include a
universe of learning resources when there does not seem to be any real intention to
include them in practical work.

A look at the pedagogical intention behind the production of objects is also necessary.
Clearly, although many digital objects could be construed as learning objects, not all
digital files are learning objects. Pornography is one obvious example. Other objects may
or may not become learning objects, as pedagogical intent is required for that to happen.
For example, a Unix utility program for listing files may be a learning object. But it
would only become a learning object if someone decided to use it as one. Intent is
necessary, and this brings us to the last component of the learning object definition:
associated metadata. We have already seen that files are not useful as learning objects
without the provision of context. A rose might be a rose by any other name, but it is not
an object unless there is some discourse associated with it.

Armed with this initially simplistic perspective on learning objects, let us now take a first
stab at providing a definition:

A learning object is a digital file (image, movie, etc.,) intended to be used
for pedagogical purposes, which includes, either internally or via
association, suggestions on the appropriate context within which to
utilize the object.

There is reasonable clarity in this definition. It usefully limits the universe of learning
objects, and it flows from current literature and practice.

If writers in this area stopped at this definition, things would be acceptable. However,
writers in this area seem to want to make learning objects “sexier” than they really are.
As a result, several attempts have been made to dress up the definition of learning
objects. One of the most counterproductive approaches has been for theorists to draw on
the discipline of computing science and, in particular, object-oriented programming
(OOP) for additional theoretical grist.4 We can see this in the following definition by
Quinn (2000):

The learning object (LO) model is characterized by the belief that we can
create independent chunks of educational content that provide an
educational experience for some pedagogical purpose. Drawing on the
object-oriented programming (OOP) model, this approach asserts that
these chunks are self contained, though they may contain references to
other objects; and they may be combined or sequenced to form longer
educational interactions. These chunks of educational content may be of
any type – interactive, passive – and they may be of any format or media
type. A learning object is not necessarily a digital object . . .

(Quinn, 2000).

Note again the tendency to make anything under the sun a learning object. But putting
this aside, our real concern is to assess whether or not we can usefully extract a sensible
understanding of what a learning object might be from CS definitions of objects.
According to Quinn’s definition above, learning objects are: a) self contained; b) modular
(i.e., they can be sequenced, combined, etc.); and c) interactive or passive.

http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#4

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

5

The definitional extensions provided by Quinn are less than satisfactory. The problem is
that even though Quinn makes a connection to OOP theory, the definition of a learning
object is reduced to a thin description of features (i.e., objects can be combined,
sequenced, and contain “references”) that do not contribute to our ability to understand or
visualize learning objects. It almost seems as if Quinn does not really understand what a
CS object is all about and can only provide a terminological gloss.

We could ignore the inadequate definition of learning objects above if it were the only
one. But other authors also provide similarly thin definitions linked to OOP theory.
Robson (1999), for example, begins his definition by stating that learning objects are
learning resources in an “object-oriented model” and then goes on, like Quinn, to provide
terse feature sets for learning objects:

Learning resources are objects in an object-oriented model. They have
methods and properties. Typically methods include rendering and
assessment methods. Typical properties include content and
relationships to other resources (Robson, 1999).

As with Quinn’s definition, the problem with Robson’s definition is one of depth. His
definition may only be useful to someone who has experience with object oriented
programming methodology. But without significant background knowledge, we have no
way to know what exactly a method is, what the properties are, and what these technical
features of learning objects provide in the way of functionality for learning objects. In
short, without knowing more about CS’s application of object oriented programming,
how can we assess the appropriateness of CS theory to our understanding of learning
objects?

The answer to that question is that we cannot. And this is a significant problem. Authors
toss around theoretical connections to object oriented theory with insufficient theoretical
rigor. Although there is nothing wrong with borrowing concepts from object theory to
develop our ideas about learning objects, we must do so carefully. We cannot just adopt
the concept of “objects,” and its related terminology such as “references,” “methods,”
etc., without carefully specifying whether or not a method for a learning object is the
same as a method for a code object.

The bottom line here is: whether or not code objects really provide suitable guidance for
us in theorizing and creating learning objects? We believe the answer to this question is a
resounding “no.” We believe most authors will admit this when pressed. As Friesen
(2001) notes, not only is there conceptual confusion in the literature and no general
agreement on how to map the features of OOP programming objects to learning objects,
the fit between the two also seems to be counterintuitive.

What senses of the word “object” are [sic] can be profitably applied to the notion of
“educational objects”? The separation [sic] educational object and metadata seems to run
counter to the combination of code and data that is said to define software objects
(Friesen, 2001).

What to make of this then? We believe we need to jettison object oriented theory
altogether and proceed to define learning objects on their own terms. However,
recognizing that there may be some resistance to this strategy, in the next section we take
a more detailed look at the core concepts of OOP theory to see how well they apply to
learning objects. The next section is moderately technical and can be skipped by those

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

6

readers so inclined. The conclusion, at the end of the article, simply suggests that we
reject the connection to OOP theory when defining learning objects.

The Etiology of Learning Objects
“Object-orientation is a new technology based on objects and classes. It
presently represents the best methodological framework for software
engineering and its pragmatics provides the foundation for a systematic
engineering discipline. By providing first class support for the objects
and classes of objects of an application domain, the object oriented
paradigm precepts better modeling and implementation of systems.
Objects provide a canonical focus throughout analysis, design, and
implementation by emphasizing the state, behavior, and interaction of
objects in its models, providing the desirable property of seamlessness
between activities.”

Robert John Hathaway

“Object-oriented languages and systems are a developing technology.
There can be no agreement on the set of features and mechanisms that
belong in an object oriented language since the paradigm is far too
general to be tied down. We can expect to see new ideas in object-
oriented systems for many years to come.”

Oscar Nierstrasz5

As noted above, the concept of an “object” is taken from CS theory where it has a
precise, if evolving, meaning. One of the most succinct definitions of computing objects
we have found to date is provided by Conway (2000, p2), who notes: “An object is an
access mechanism for data. In most object-oriented languages that means that objects act
as containers for data or, at least, containers for pointers to data. But in the more general
sense, anything that provides access to data – a variable, a subroutine, a file handle – may
be thought of as an object.”

This is a useful starting point. Objects are containers of data. This does not contradict our
definition of learning objects – i.e., pedagogical intent, associated metadata, digital file
— nor does it enhance the definition we have set up so far for the learning object. Our
definition that learning objects are digital files implies, without needing comment, that
these objects would contain data. With this in mind, we will need to delve deeper into
OOP theory to see sharper contradictions.

A container of data, digital or otherwise, is somewhat useless unless there is a way to
access and manipulate data. And in fact, OOP theory extends the definition of objects to
include access methods. In computing science, objects will always be written to provide
encapsulated access to the attributes (data) of an object.

The notion of encapsulated access to data basically means that in an OOP program, the
only way to read or write an object’s data is “through certain subroutines associated with
the object” (Conway, 2000: 2). In OOP, subroutines are renamed as methods to
distinguish them from the more mundane notions of subroutines and functions in
unstructured programming. In OOP terminology, we say we access and manipulate object
data (attributes) with methods. Let us explore these terms in more detail.

Most people with basic programming experience will be familiar with a program
subroutine or function. Typically, a subroutine or function will provide some sort of

http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#5

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

7

service to the programmer. The code that provides this service, perhaps like printing a
block of information, is moved out of the main program code into a subroutine. This is
done for several reasons: it makes code easier to follow, hides program complexity,
facilitates code re-use (by encouraging programmers to code general routines), and
increases the modularity of programs6 . In OOP theory, this is called encapsulation, and
“methods” (the OOP version of “functions”) do pretty much the same thing. Interestingly,
many of the features that authors on learning objects attribute to OOP theory really
belong to general programmer guidelines.

A typical subroutine to print a user’s name would look something like this:

name($name) {
sprintf(“The student’s name is %s”, $name);
return 1;
}

The above example is simple, but it illustrates the functionality of subroutines. It takes a
variable (in this case the student’s name), and then prints it to some output device in a
formatted string. More generally, subroutines take in data (we say we “pass” data to a
subroutine), manipulate it, and then output or store it.

OOP methods share all the features of regular subroutines. Methods are designed to allow
programmers to re-use code; they also provide encapsulation. However, when individuals
program using OOP methodology, they go farther that the encapsulation associated with
subroutines because, in addition to wrapping code, they also encapsulate data. This
difference is not immediately transparent to the non-programmer.

The same print name function, as a method, might look something like this:

name() {
sprintf(“The student’s name is %s”, $this->name);
return 1;
}

Notice any difference? Really the only difference is that, unlike the function or
subroutine in traditional programming, variables (e.g., the student’s name) are not
“passed” to the subroutine. To rephrase this point, the programmer does not pass data to
the method. Understanding this difference is the key to unlocking the mysteries of OOP
programming.

In an OOP program, the program knows which name to print because the method is part
of an object and the object itself contains (or encapsulates) the data, as we stated in the
definition of the “object” above. The method can access data at will without ever having
to be told directly by the programmer what the data are. This “magic,” as it may seem,
occurs with a lot of up front grunt work. In OOP programming, objects are designed to
encapsulate meaningful blocks of data, and then incorporate extra code that allows your
object to carry around the relevant data.

Once the object is designed, it can then be used in higher-level code. To do that, however,
the object must first be “created” — in other words, data must be gathered and spaces
must be created in memory to store that data, and methods for accessing that data. In
OOP parlance we say we construct the object.

http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#6

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

8

In a program, constructing an object begins with a call to an object constructor. A
constructor might look something like this:

$myUser = new User(‘userid’=>239480);

The above object constructor (signified by the “User” keyword) is simply another
“method.” The key difference is that the constructor has a specific role or function to
play. When programmers write the code for the object, they put all the code they need to
create the user object or “data container” inside the User “method” or constructor. Calling
the constructor creates the object by gathering data, associating methods, and clearing
memory for storage.

In this case the object takes a student ID, finds the associated student, creates data
structures to store student data, and returns a user object, which is then stored in the
variable myUser for future access. Code in the User constructor might look something
like this:

$query=qq! SELECT * FROM Users WHERE User_id =? !;
 unless ($user=Bazaar::DB->fetchrow_hashref(
 -query=>$query,
 -bind=>$bindid)) {
 $this->user = Bazaar::DB->fetchrow_hashref(
 -query=>$query,
 -bind=>1)};

The code above is a real world example – though stripped down by several hundred lines
in order to isolate a single key function and to better illustrate the purpose of a
constructor. In the above example, we basically execute a Structured Query Language
(SQL) command that connects to a database, and then grabs all the information available
for the user whose “User_id” is equal to 239480, and stores this information in a special
variable (a reference encapsulated in the object) called “$this->user.” By storing
information in a variable like this, the data then becomes available to the programmer as
part of the object.

Once the user is created, it is possible to manipulate that user object in the code much
easier than with traditional functions and subroutines, because it is not necessary to worry
about the data associated with the user or the code used to access and manipulate that
data. The programmer does not need to pass the user’s name in and out, or worry about
how to change said name. All data and methods for accessing data are encapsulated
inside the well-designed object.

For example, it is possible to:

output the user’s name

 print $user->Username()

email the user a message

 $user->email($message)

or delete the user.

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

9

$user->delete()

It is possible to even change the properties of the object. In the example below, we
change the user’s first name from whatever it was before, to “Mike.”

$user->username(‘firstname=>“Mike”)

All this is done with incredible ease. Of course, behind these simple one-liners of code
there is also considerable program code. But the code examples are used here to show
that the OOP method hides that complexity and encapsulates the object properties so that
we can easily program with the object. OOP is really a way to reduce the amount of
complexity involved in creating large-scale applications.7

There is one primary disadvantage of OOP programming — the requirement of a large
amount of overhead. To do anything with an object requires more initial planning and
coding that with traditional methods. With OOP, one must:

1) Do up-front conceptualization of the object (i.e., determine in advance a
reasonable set of properties and methods)

2) Write object constructors

3) Write code to encapsulate and deliver properties

4) Write object methods

All of these tasks begin before one even starts to code the main program routines. All of
this extra code requires extra time for the programmer and extra resources from the
computer. However, disadvantages associated with OOP programs are far out weighed by
their advantages, especially when working on larger projects.

One important advantage is that OOP methodology provides clean code that is easy to
understand and sift through for programmers. This is important for larger projects that
may see several new programmers enter the project over its lifespan. OOP makes it easier
for new programmers to navigate the code logic because the logic is separated from the
implementation. For example, if you were a new programmer trying to understand what a
particular block of code does, you would see the following:

$user = new User(‘user_id’=23423); $user->archive() $user->delete()

They would instantly be able to tell what is happening in the code. As new programmers
on the project, they do not need to know (or even care) about the several hundred lines of
code that are needed to construct the user and then copy the user’s data to an archive and
delete the user. They can begin modifying program logic immediately. Of course, there
may come a time when they may need to debug the archiving function of the program. If
that day comes, they will then need to peer into the black box of the archive function and
learn the internals of the method. But that is also facilitated by OOP methods. They will
know exactly where to start because the program logic is clearly exposed for them. They
will not have to deal with the spaghetti-type mess that is common for non-OOP
programs.

A second important advantage of using OOP methodology is that the objects and the code
are highly extensible and extendable. It is easy and quick to add functionality to an OOP

http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#7

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

10

program without adding additional bugs. The way that the objects are constructed gives
programmers a convenient “container” in which they may put any additional properties or
methods that might become useful to the program at a latter date. For example, if it is
necessary to add a user’s honorific (e.g., ‘Dr.’), the required code and routines can easily
be added into the user object. In fact, chances are that there is already a code template in
the program that may be used for just that purpose. Typically, functionality can be added
to OOP programs in a fraction of the time required for a regularly coded project. And, the
bigger the project, the bigger this advantage becomes.

A third benefit of OOP programming is that the code is reusable. In programming,
reusability means a number of things. First of all, reusability in OOP methodology means
that the object code itself can be reused inside the same program (this is called cloning).
We have already seen this, and it simply means that more than one copy of an object may
be used at the same time. In our code example above, we created multiple user objects,
such as we see here:

$user_one = new User(‘userid’=>239480) $user_two = new User(‘userid’=>480);

Object reusability also refers to the fact that objects can inherit properties and methods
from other objects. Downes (2001) has a solid explication of what this means when he
describes the process of moving from simple objects to more complex objects through the
inheritance process. Inheriting the methods and properties of other objects in large scale
projects8 saves coding and conceptualization time.9

There is one other instance in which OOP code can be seen as reusable. This is in the
simple ability to cut and paste large blocks of OOP code and insert it into other programs
where it may be modified for other purposes. This “feature” of OOP code comes from the
highly modular nature of an OOP program, in which all data is encapsulated and all
methods have easily definable purposes. It is thus easy to chop and hack out sections of
code for reuse in other areas.

To summarize, then, OOP methodology is preferred for larger programming projects
because it provides a methodology that makes it easier to understand code logic, easier to
debug code when necessary, easier to extend and modify code as project needs evolve,
and easier to reuse objects and the code behind these objects.

It does this by providing programmers with a set of conceptual tools that help them
organize code and think of their programs in terms of meaningful units. Programmers
create objects that provide meaningful containers whereby they can encapsulate data and
hide functionality in methods. It is this encapsulation and the methods whereby object
data are accessed and manipulated that provide the infrastructure that makes possible the
benefits of OOP summarized above.

Learning Objects

Let us recall our Careo example: http://aloha.netera.ca/uploads/crdc/unit60022b.jpg.
Some readers might be wondering what OOP methodology has to do with a picture as a
“learning object.” As was noted above, there is conceptual confusion in the literature and
an inability to map the features of OOP programming objects to learning objects
dominates the literature (Friesen, 2001).

http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#8
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#9
http://aloha.netera.ca/uploads/crdc/unit60022b.jpg

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

11

Friesen (2001) summarizes the thinking in the literature on how computing science
objects map to learning objects, when he notes that authors”… most often identify
‘modularity’, ‘interoperability’, [and] ‘discoverability’ as important attributes of
educational objects.” However, examining these features only emphasizes the theoretical
morass. Not only are interoperability and discoverability decidedly not features of OOP
programming (as we have seen), there is no general agreement on how each of these
items should be conceived or mapped when it comes to learning objects themselves.

To complicate matters further, Friesen points to three more-or-less distinct definitions of
the term modularity in the literature. Ironically, none of these definitions seem to be at all
helpful in theorizing learning objects:

Educational objects, as Longmire describes them, must be modular,
“free standing, non-sequential, coherent and unitary.” Others describe
the same idea using slightly different terms. Roschelle, et. al. (1998)
states that the object must be adaptable “without the help of the original
developers to meet unforeseen needs.” According to Ip, et. al., the object
must be constructed in such a way that its users “need not worry about
the component’s inner complexity.” The educational object, in other
words, should be a “black box” in the sense described in the theory of
object-oriented design.

The above definitions are not helpful. Some parts of the conceptual paradigm, such as the
requirement that learning objects be freestanding, non-sequential, coherent, or adaptable,
do not map to OOP theory at all. A programming object may be some or all of these
things, depending upon what the original authors might mean by these definitions. But a
programming object also may not be freestanding and non-sequential. Some objects may,
for example, be useful only in the restricted context of the program or sub-program for
which they were designed. As may be recalled, the real nature of CS objects comes from
they way in which they encapsulate code and data. As for the modifiability of an object
by other than the original developer, that is a desideratum of all program code and is not
the exclusive domain of OOP theory.

To be fair, there is a correspondence between the notion of modularity in the concept of a
black box and learning object. But here the link to computing science objects actually
reduces our understanding by introducing concepts that confuse they layman and require
considerable explanation and modification before they can become useful. Friesen points
to Berard’s explication of objects: “Specifically, the underlying implementations of
objects are hidden from those that use the object. In object-oriented systems, it is only the
producer (creator, designer, or builder) of an object that knows the details about the
internal construction of that object. The consumers (users) of an object are denied
knowledge of the inner workings of the object” (Berard quoted in Friesen, 2001).

In terms of the understanding of a CS object, this is exactly right. Here the consumers are
other programmers, and it is not necessary for them to understand the inner workings of
code. They simply call the black box within the appropriate parameters.

$user->email($message)

However, in the case of the CS object, the notion of the consumer is strictly associated
with the programmer. The consumer of the above method could be the original
programmer using her own code object or a third-party programmer who is part of a

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

12

development team working on a larger project. The consumer could even be an unknown
programmer making use of some more generic library of code. This is easy enough.

Confusion enters the world of the learning object when we search for a consumer of said
object (as required by CS theory). Here, in looking for an appropriate mirror concept, we
end up trying to incorporate even more unnecessary concepts from OOP theory, thus
clouding our understanding even further. In the quote from Friesen (2001) an attempt is
made to show how applet users as consumers are faced with the black box of code design
and how these consumers use an applet’s interface to interact with it:

Initially, this principle would seem most appropriate for educational
objects, especially for software components. It certainly would seem like
a good way to characterize the operation of “executable” educational
objects like Java Applets or Flash components. For example, the Java
applets collected by the Educational Object Economy (or the EOE, one
of the first repositories of educational objects), for example, would seem
to conform to this characteristic. Users of an object are denied
knowledge of the most detailed, inner workings of the objects. Instead,
they must deal with the object via one of two “interfaces” identified by
Berard as standard for software objects in general: “The ‘public’
interface that is open (visible) to everybody”, and “the ‘parameter’
interface” providing the instructor with a limited ability to customize the
operation of the object (Friesen, 2001).

Sadly, the concept of interface does not map outside of the internal workings of the Java
applet or OOP theory either. To be sure, programs can have interfaces. But they are not
the same types of interfaces spoken of in OOP theory when we speak of an object having
an interface and there is little meaning in trying to connect the two. In OOP theory, or
OOP practice, an object’s “interface” means, simply, the methods that are available for
manipulating the object’s data. For example, a user object might have the following
interface:

Public $user->rename() Public $user->delete() Public $user->archive() Public $user-
>copy Public $user->move() Public $user->email()
Private $user->frobnicate() Private $user->dbConnect() Private $user-
>dbDisconnect

The object interface here is all the methods that the programmer created for manipulating
data. The interface itself can be divided into public and private components. The public
side of the interface (easily recognized above by the modifier keyword “public”) involves
those methods to which the application programmer has access. This means that if I am
creating a grade book, for example, and want to use an already available user object, I
can only use the public methods of that object. The private methods are those that cannot
be called outside of the object itself, and to which I cannot have access. Private methods
are internal to the object.

Typically, private methods are used by the object itself. For example, the user object
might contain a public method to rename a user. The method rename might have the
following code:

Public Rename() {
 $this->dbConnect();
 $newuser=$user->copy();

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

13

 $user->delete();
 $this->dbDisconnect();}

The private methods of dbConnect and dbDisconnect are, basically, internal utility
functions of the object itself. They are used by the routine to manage a database
connection. This is a benefit for the programmer who is using the object and part of the
object’s encapsulation. A consumer of the user object, though, would not have to manage
the db connections. The object handles that. In fact, some OOP languages, such as Java,
make it impossible to use private methods.

There are good reasons for hiding some methods from the user. However, we will not go
into detail in this article. Suffice it to say, that hiding unnecessary functions from
programmers reduces bugs and enhances the object’s long-term utility to the
programmer. By exposing only certain methods, and by guaranteeing that the prototype
of these methods never changes, programmers can rest assured that future modifications
to the way an object is implemented will not affect the programs into which they have
incorporated the object.

Conclusion: To object or not to object

If the above paragraph sounds like so much techno-speak to you, then perhaps we can use
that to segue into the main conclusion of this article. Although OOP theory has many
interesting concepts wrapped up in a lot of fancy words, the applicability of OOP theory
and/or methods to our understanding of learning objects is marginal, at best, and
absolutely counterproductive at worst. This can be clearly seen when we consider that: a)
few concepts of OOP theory have anything at all to do with learning objects; and b) those
that do have marginal applicability actually end up muddying the waters. In simple terms,
we end up wasting considerable time and energy trying for force learning objects into an
object oriented model.

This is not exactly an original insight. Other authors recognize these difficulties and have
even suggested the need to jettison most of the borrowing from OOP theory. Friesen
(2001), for example, ultimately reduces the contribution of OOP to only providing the
notion of reusability of objects. But even this is not satisfactory, because we really
connote something different when we talk about the reusability of learning objects. As
well, we do not need OOP theory to define our objects as reusable or modular or platform
independent or anything else. In fact, we would probably advance much faster in our
understanding of learning objects if we did not use OOP at all. We spend so much time
negotiating with the ghosts of OOP theory, that we cut ourselves off from exploring more
appropriate theoretical foundations for learning objects. There is a rich literature in
developmental psychology, sociology, and even computation that deals directly with
issues relevant to our understanding of learning objects, and it is in these resources that
we should be looking if we wish to develop our definitions and refine our understanding
of learning objects.

So if we jettison OOP theory, where does this leave us in terms of a definition of learning
objects? The definition we introduced at the outset is still useful:

A learning object is a digital file (image, movie, etc.) intended to be used
for pedagogical purposes, which includes, either internally or via
association, suggestions on the appropriate context within which to
utilize the object.

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

14

This definition is a useful starting point, though it is far from complete. As we have seen,
learning object users have considerable expectations about how they will perform. They
are viewed as more than mere learning resources or as providers of a host of fancy
features that will make them useful pedagogically, economically, and politically.
Accordingly, in our wildest dreams and fancies, an object is not an object is not an object.
It is much more.

Just how much more is a useful question that we need to explore in more detail. The map
for that exploration can be easily laid. We need to ask several questions, including:

1. What is the point/purpose of learning objects? Are they here to solve problems
in the education system? Are they here to enhance current instruction? Do they
form part of a revolutionary front that will transform the provision of face-to-face
or distance education?

2. What features of learning objects will help us realize our objectives (as noted
above)? Can simple image files function as objects or must these image files be
enhanced in several ways to meet our objectives?

3. If files need to be enhanced, what technologies will we draw upon to achieve
our objectives? Obviously, our choice of technology will need to be guided by a
clear set of objectives and an outline of which objects are intended to be met.

4. What role will standards play? A lot of work has been done to develop
standards for meta-data. Given the purposes and features of learning objects, will
this work be relevant? Or can we get by with simpler notions of meta-data?

5. How will we evaluate objects from a practical and/or theoretical standpoint?
Although we have not broached the topic at all, as a collective, we have high
expectations about how learning objects will perform in the new economy.
However, we have no way to evaluate our claims. Nor, does it seem, that we are
ashamed to reduce ourselves to polemical justifications (Downes, 2001). Yet, if
we are to be taken seriously, we will need to develop evaluative mechanisms.
And this brings us to the following question.

6. What theories can we draw upon to understand learning objects? We need
theories, because it is in the development of theories of learning objects that we
will find the means to criticize, evaluate and evolve our understanding and use of
learning objects. Our theories can be imported from, for example, instructional
design, or modified and distilled from eclectic sources. However, we need
appropriate theoretical underpinnings.

This last question could also just as easily be captured in the first question above. The
process of answering these questions will be iterative. We will have to constantly move
back and forth between theory and standards, and actual implementations as we evolve
our understanding of learning objects and their applications. We will need to ground our
theory in implementation details and research on the pedagogical effectiveness of
learning objects. That is, we need to make sure we can implement our notions of objects
in code and we need to be sure our implementations actually contribute something to the
realm of educational theory and practice.

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects

15

References

ASTD & SmartForce (2002, July). A Field Guide to Learning Objects. Learning Circuits.
Retrieved October 1, 2002 from: http://www.learningcircuits.org/field_guides

Baron, T. (2000). Learning Object Pioneers. Learning Circuits CAREO (2002). Campus
Alberta repository of educational objects Retrieved October 19, 2002 from:
http://www.careo.org/

Conway, Damian. (20000. Object Oriented Perl. Greenwich, CG: Manning

Downes, Stephen (2001). Learning Objects: Resources For Distance Education
Worldwide. International Review of Research in Open and Distance Education
Vol.2(1). Retrieved October 19, 2002 from: www.irrodl.org

Friesen, Norm (2001). What are Educational Objects. Interactive Learning Environments.
9(3). Retrieved October 19, 2002 from:
http://www.careo.org/documents/objects.html

IEEE Learning Technology Standards Committee (1998). Learning Object Metadata
(LOM): Draft Document v 2.1.

IMS Global Learning Consortium (2000). IMS Learning Resource Meta-data Best
Practices and Implementation Guide v1.1

Ip, A., Fritze, P., and Ji, G. (1997). Enabling Re-usability of courseware components with
Web-based “virtual apparatus.” unpublished document.

Quinn, C. N. (1999). Learning Objects and Instruction Components. International Forum
of Educational Technology & Society. In R. Robson, Object-oriented
Instructional Design and Web-based Authoring. Retrieved October 19, 2002
from: http://www.eduworks.com/robby/papers/objectoriented.pdf

Webster, F. (1995). Theories of the Information society. New York: Routledge

Endnotes

1. In the literature, the terms “learning object” and “educational object” are used
interchangeably. In writing this article, we adopt the term “learning object.” However
other authors use educational object to refer to the same construct.

2. http://www.imsglobal.org/

3. http://ltsc.ieee.org/

4. The reason for the attempt to connect learning objects to code objects is simple. There
is a grammatical affinity between the term ‘object’ used in ‘learning object’ and object-
oriented programming theory. However, as we will see, grammatical affinity is not
sufficient justification for drawing from object-oriented programming theory.

5. http://www.cetus-links.org/oo_infos.html

http://www.learningcircuits.org/field_guides
http://www.careo.org/
http://www.irrodl.org/
http://www.careo.org/documents/objects.html
http://www.eduworks.com/robby/papers/objectoriented.pdf
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#1b
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#2b
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#3b
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#4b
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#5b

Sosteric & Hesemeier – When is a Learning Object not an Object: A first step towards a theory of learning objects
16

6. With subroutines, it is possible to create a 1000 line program to, for example, connect
to websites, and then reuse that subroutine in multiple parts in the same program, or
indeed in different programs altogether. It is even possible to make code more generic
and move subroutines into code libraries where they can then be called upon to serve the
programmer’s whims again and again.

7. OOP hides the complexity of real life applications in other ways as well. For example,
with OOP, you can easily manage more than one complex data structure can be managed
easily in an intuitive and fluid fashion. It is also possible to have more than one user in
your program at the same time. $user_one = new User(‘userid’=>239480); $user_two =
new User(‘userid’=>480); Because the complexity of these objects is hidden, it becomes
easy to juggle multiple data objects without getting variables and references confused.
The variables and references are in the object and, once the object is created and
debugged, one normally does not have to worry about that complexity again.

8. In practice this feature of OOP is seldom used because in all but the largest projects, it
adds unnecessary complexity to programs. If programmers want a student object, they
simply code a student object from the start, and do not worry about the added complexity
of an object hierarchy.

9. In practice this feature of OOP is seldom used because in all but the largest projects, it
adds unnecessary complexity to programs. If programmers want a student object, they
simply code a student object from the start, and do not worry about the added complexity
of an object hierarchy.

http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#6b
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#7b
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#8b
http://www.irrodl.org/index.php/irrodl/article/viewArticle/106/185#9b

